主要内容

高等代数 多项式与线性代数

6.5 同构映射与线性空间同构

虽然线性映射可以保持线性运算,具有很好的代数性质。但是,通过第6.3节中的讨论,我们看到线性映射未必能保持所有的重要性质,如向量组的线性无关性以及子空间的维数。如果我们对线性映射加上更强的条件,要求该映射还是双射,那么我们就可以保留线性空间的几乎所有性质。

子节 6.5.1 同构映射

定义 6.5.1.

\(V\)\(U\)为数域\(\F\)上的两个线性空间,若存在映射\(\varphi : V \to U\)满足
  1. \(\varphi\)是双射,
  2. \(\varphi\)是线性映射,
则称\(\varphi\)\(V\)\(U\)同构映射

6.5.2. 坐标映射是同构映射.

\(V\)\(n\)维线性空间,\((\xi_{1}, \ldots, \xi_{n})\)\(V\)的一组基。在第6.2节中,我们看到\(V\)中向量到其在\((\xi_{1}, \ldots, \xi_{n})\)下的坐标的映射是双射(命题6.2.6),且是线性映射(定理6.2.7)。因此,坐标映射是从线性空间\(V\)到线性空间\(\F^{n}\)的同构映射。
在同构映射下,线性空间的许多代数结构都等价。例如,向量的线性表出关系在同构映射下等价,即命题6.3.16中的必要条件可加强为充要条件。

证明.

必要性可由命题6.3.16直接得到。 考虑充分性,设
\begin{equation*} \varphi(\alpha) = c_{1} \varphi(\alpha_{1}) + \cdots + c_{n} \varphi(\alpha_{n}), c_{1}, \ldots, c_{n} \in \F. \end{equation*}
由于同构映射\(\varphi\)保持线性运算,有
\begin{equation*} \varphi(\alpha) = \varphi(c_{1} \alpha_{1} + \cdots + c_{n} \alpha_{n}). \end{equation*}
又因为同构映射\(\varphi\)是单射,必有\(\alpha = c_{1} \alpha_{1} + \cdots + c_{n} \alpha_{n}\)
在同构映射下命题6.3.17中的必要条件也可加强为充要条件,从而向量组的线性相关/无关性也可等价。

证明.

必要性可由命题6.3.17直接得到。 考虑充分性,设存在非全零系数\(c_{1}, \ldots, c_{n} \in \F\)使得
\begin{equation*} c_{1} \varphi(\alpha_{1}) + \cdots + c_{n} \varphi(\alpha_{n}) = 0_{U}. \end{equation*}
应用\(\varphi\)保持线性运算的性质和命题6.3.14可得
\begin{equation*} \varphi(c_{1} \alpha_{1} + \cdots + c_{n} \alpha_{n}) = \varphi(0_{V}). \end{equation*}
又因为同构映射\(\varphi\)是单射,所以\(c_{1} \alpha_{1} + \cdots + c_{n} \alpha_{n} = 0_{V}\)
此外,子空间直和结构在同构映射下也是等价的。

证明.

充分性:由命题4.4.22,我们仅需证明\(V_{1} \cap V_{2} = 0\)(此处\(0\)表示零子空间)。设\(\alpha \in V_{1} \cap V_{2}\),则\(\varphi(\alpha) \in \varphi(V_{1}) \cap \varphi(V_{2})\)。由已知条件\(\varphi(V_{1}) \oplus \varphi(V_{2})\),我们有\(\varphi(\alpha) = 0_{U} = \varphi(0_{V})\),其中最后一个等式根据命题6.3.14得到。又因为\(\varphi\)是单射,所以\(\alpha = 0_{V}\)。因此,\(V_{1} \cap V_{2} = 0\)
必要性:仅需证明\(\varphi(V_{1}) \cap \varphi(V_{2}) = 0\)。设\(\beta \in \varphi(V_{1}) \cap \varphi(V_{2})\),则存在\(\alpha_{1} \in V_{1}, \alpha_{2} \in V_{2}\)使得\(\varphi(\alpha_{1}) = \varphi(\alpha_{2}) = \beta\)。由于\(\varphi\)保持线性运算,\(\varphi(\alpha_{1} - \alpha_{2}) = 0_{U} = \varphi(0_{V})\)。又因为\(\varphi\)是单射,所以\(\alpha_{1} - \alpha_{2} = 0_{V}\),即\(\alpha_{1} = \alpha_{2} \in V_{1} \cap V_{2}\)。由已知条件\(V_{1} \oplus V_{2}\),我们有\(\alpha_{1} = \alpha_{2} = 0_{V}\),因此\(\beta = \varphi(0_{V}) = 0_{U}\)
我们注意到,在上述三个命题的证明中,我们其实并未完全用到\(\varphi\)是双射这一强有力的保证,而是仅仅用到了\(\varphi\)是单射。 若是加上\(\varphi\)是满射这一性质,我们可以得到更有趣的结果:线性空间的基在同构映射下也是等价的。

证明.

由命题6.5.4可知,\(\alpha_{1}, \ldots, \alpha_{n} \)线性无关当且仅当\(\varphi(\alpha_{1}), \ldots, \varphi(\alpha_{n})\)线性无关。 因此,由基的定义4.4.11,仅需证明\(\alpha_{1}, \ldots, \alpha_{n}\)可线性表出\(V\)中所有向量当且仅当\(\varphi(\alpha_{1}), \ldots, \varphi(\alpha_{n})\)可线性表出\(U\)中所有向量。
必要性:设\(\beta \in U\),由于\(\varphi\)\(V\)\(U\)的满射,\(\beta\)\(V\)中存在原像\(\alpha \in V\)使得\(\varphi(\alpha) = \beta\)。又因为\(\alpha_{1}, \ldots, \alpha_{n}\)可线性表出\(V\)中所有向量,所以存在\(c_{1}, \ldots, c_{n} \in \F\)使得
\begin{equation*} c_{1} \alpha_{1} + \cdots + c_{n} \alpha_{n} = \alpha. \end{equation*}
将保持线性运算的同构映射同时作用于等式两边的向量得
\begin{equation*} \varphi(c_{1} \alpha_{1} + \cdots + c_{n} \alpha_{n}) = c_{1} \varphi(\alpha_{1}) + \cdots + c_{n} \varphi(\alpha_{n}) = \varphi(\alpha) = \beta, \end{equation*}
\(\beta\)可由\(\varphi(\alpha_{1}), \ldots, \varphi(\alpha_{n})\)线性表出。
充分性:设\(\alpha \in V\),由于\(\varphi(\alpha)\)可在\(U\)中由\(\varphi(\alpha_{1}), \ldots, \varphi(\alpha_{n})\)线性表出,存在\(c_{1}, \ldots, c_{n} \in \F\)使得
\begin{equation*} c_{1} \varphi(\alpha_{1}) + \cdots + c_{n} \varphi(\alpha_{n}) = \varphi(\alpha). \end{equation*}
\(\varphi\)保持线性运算的性质及其单射的性质,我们有\(c_{1} \alpha_{1} + \cdots + c_{n} \alpha_{n} = \alpha\)
一个简单的推论是子空间的基和维数在同构映射下也等价。

子节 6.5.2 线性空间同构

同构映射可以保持线性空间几乎所有的性质。特别地,当两个线性空间之间存在同构映射时,它们从线性代数的本质上来说是一样的。

定义 6.5.8.

\(V\)\(U\)为数域\(\F\)上的两个线性空间,若存在\(V\)\(U\)的同构映射,则称线性空间\(V\)\(U\) 同构,记为\(V \cong U\)
可以验证线性空间的同构关系是一个等价关系,满足:
  1. 自反性:\(V \cong V\)
  2. 对称性:若\(V \cong U\),则\(U \cong V\)
  3. 传递性:若\(V \cong U\)\(U \cong W\),则\(V \cong W\)
因此,同构关系将线性空间划分为不同的等价类。同一个等价类中的线性空间有什么共同特点呢? 下面的定理是本节中关于线性空间同构理论的最主要结论,它表明线性空间的维数是同构等价类中最核心的等价不变量。

证明.

必要性:若\(V\)\(U\)同构,则存在从\(V\)\(U\)的同构映射\(\varphi\),由命题6.5.6可知,\(\varphi\)\(V\)的一组基映射成\(U\)的一组基,因此\(V\)\(U\)维数相同。
充分性:设\(\dim V = \dim U = n\),令\((\alpha_{1}, \ldots, \alpha_{n}) \in V\)\(V\)的基,\((\beta_{1}, \ldots, \beta_{n}) \in U\)\(U\)的基。由于\((\alpha_{1}, \ldots, \alpha_{n})\)\(V\)的基,任意\(\alpha \in V\)可由改组基唯一地线性表示为\(\alpha = c_{1} \alpha_{1} + \cdots + c_{n} \alpha_{n}\),其中\(c_{1}, \ldots, c_{n} \in \F\)。我们定义\(V\)\(U\)的映射\(\varphi\)如下:
\begin{equation*} \varphi(\alpha) := c_{1} \beta_{1} + \cdots + c_{n} \beta_{n}, \quad \forall \alpha = c_{1} \alpha_{1} + \cdots + c_{n} \alpha_{n} \in V. \end{equation*}
下面证明\(\varphi\)\(V\)\(U\)的同构映射。首先说明\(\varphi\)是单射。对于任意\(\gamma_{1}, \gamma_{2} \in V\),设
\begin{equation*} \gamma_{1} = a_{1} \alpha_{1} + \cdots + a_{n} \alpha_{n}, \end{equation*}
\begin{equation*} \gamma_{2} = b_{1} \alpha_{1} + \cdots + b_{n} \alpha_{n}, \end{equation*}
其中\(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \F\)。 若\(\varphi(\gamma_{1}) = \varphi(\gamma_{2})\),由\(\varphi\)的定义有
\begin{align*} \amp a_{1} \beta_{1} + \cdots + a_{n} \beta_{n} = b_{1} \beta_{1} + \cdots + b_{n} \beta_{n}\\ \quad \iff \quad \amp (a_{1} - b_{1}) \beta_{1} + \cdots + (a_{n} - b_{n}) \beta_{n} = 0. \end{align*}
又因为\(\beta_{1}, \ldots, \beta_{n}\)线性无关,所以\(a_{i} = b_{i}, \forall i=1,\ldots,n\),即\(\gamma_{1}=\gamma_{2}\)。因此,\(\varphi\)是单射。
接下来,说明\(\varphi\)是满射。设\(\beta\)\(U\)中任一向量,由于\((\beta_{1}, \ldots, \beta_{n})\)\(U\)的基,存在唯一一组\(d_{1}, \ldots, d_{n} \in \F\)使得
\begin{equation*} \beta = d_{1} \beta_{1} + \cdots + d_{n} \beta_{n}. \end{equation*}
我们令\(\alpha= d_{1} \alpha_{1} + \cdots + d_{n} \alpha_{n} \in V\),由\(\varphi\)的定义可知\(\varphi(\alpha) = \beta\),即\(\beta\)可在\(V\)中找到\(\varphi\)下的原像。由\(\beta\)的任意性,\(\varphi\)是满射。
最后,我们说明\(\varphi\)保持线性运算。对于任意\(\alpha_{1}, \alpha_{2} \in V\),设
\begin{equation*} \alpha_{1} = a_{1} \alpha_{1} + \cdots + a_{n} \alpha_{n}, \quad \alpha_{2} = a'_{1} \alpha_{1} + \cdots + a'_{n} \alpha_{n}. \end{equation*}
考虑任意\(c_{1}, c_{2} \in \F\),根据\(\varphi\)的定义,我们有
\begin{align*} \varphi(c_{1} \alpha_{1} + c_{2} \alpha_{2}) \amp =\varphi( (c_{1} a_{1} + c_{2} a'_{1}) \alpha_{1} + \cdots + (c_{1} a_{n} + c_{2} a'_{n}) \alpha_{n} ) \\ \amp = (c_{1} a_{1} + c_{2} a'_{1}) \beta_{1} + \cdots + (c_{1} a_{n} + c_{2} a'_{n}) \beta_{n}. \end{align*}
结合\(U\)中加法和数乘的性质以及\(\varphi\)的定义可得,
\begin{align*} \varphi(c_{1} \alpha_{1} + c_{2} \alpha_{2})\amp = c_{1} (a_{1} \beta_{1} + \cdots + a_{n} \beta_{n}) + c_{2} (a'_{1} \beta_{1} + \cdots + a'_{n} \beta_{n}) \\ \amp = c_{1} \varphi(\alpha_{1}) + c_{2} \varphi(\alpha_{2}). \end{align*}
根据命题6.3.12\(\varphi\)保持线性运算。
在第4.4节中,我们已知\(n\)维列向量空间\(\F^{n}\)的维数为\(n\),所以由定理6.5.9可以得到直接的推论。
因此,对任何有限维线性空间的讨论可不失一般性地转化为对相同维数的列向量空间的讨论。 第6.2节中的坐标映射给出了具体的转化方式。 由此,我们进一步验证了第6.2节开头所提到的,列向量空间已经足以抓住一般有限维线性空间的线性代数本质。

练习 6.5.3 练习

基础题.

1.
\((\xi_{1}, \ldots, \xi_{n})\)是线性空间\(V\)的一个基,\(\varphi: V \to V\)\(V\)上的线性变换,证明:\(\varphi\)是双射当且仅当\(\varphi(\xi_{1}), \ldots, \varphi(\xi_{n})\)线性无关。
解答.
先证必要性:设\(\varphi\)是双射,则\(\varphi\)是可逆线性变换。假设存在标量\(c_{1}, \ldots, c_{n}\)使得
\begin{equation*} c_{1} \varphi(\xi_{1}) + \cdots + c_{n} \varphi(\xi_{n}) = 0. \end{equation*}
由于\(\varphi\)是线性的,上式等价于\(\varphi(c_{1} \xi_{1} + \cdots + c_{n} \xi_{n}) = 0\)。因为\(\varphi\)是单射(双射蕴含单射),所以\(c_{1} \xi_{1} + \cdots + c_{n} \xi_{n} = 0\)。而\(\xi_{1}, \ldots, \xi_{n}\)是基,故线性无关,于是\(c_{1} = \cdots = c_{n} = 0\)。因此\(\varphi(\xi_{1}), \ldots, \varphi(\xi_{n})\)线性无关。
再证充分性:设\(\varphi(\xi_{1}), \ldots, \varphi(\xi_{n})\)线性无关。因为\(\dim V = n\),所以\(\varphi(\xi_{1}), \ldots, \varphi(\xi_{n})\)也是\(V\)的一个基。对任意\(\alpha \in V\),存在唯一标量\(a_{1}, \ldots, a_{n}\)使得\(\alpha = a_{1} \varphi(\xi_{1}) + \cdots + a_{n} \varphi(\xi_{n})\)。定义映射\(\psi: V \to V\)\(\psi(\alpha) = a_{1} \xi_{1} + \cdots + a_{n} \xi_{n}\),则易验证\(\psi\)是线性映射,且\(\psi \varphi = \varphi \psi ={\rm id}_{V}\),故\(\varphi\)可逆,从而是双射。
2.
\(\varphi\)是从线性空间\(V\)\(U\)的同构映射,\(V_{1}, V_{2}\)\(V\)的子空间,证明:
\begin{equation*} \varphi(V_{1} + V_{2}) = \varphi(V_{1}) + \varphi(V_{2}) \quad \text{且}\quad \varphi(V_{1} \cap V_{2}) = \varphi(V_{1}) \cap \varphi(V_{2}). \end{equation*}
解答.
先证第一个等式。任取\(\beta \in \varphi(V_{1} + V_{2})\),则存在\(\alpha \in V_{1} + V_{2}\)使得\(\beta = \varphi(\alpha)\)。由\(V_{1} + V_{2}\)的定义,存在\(\alpha_{1} \in V_{1}, \alpha_{2} \in V_{2}\)使得\(\alpha = \alpha_{1} + \alpha_{2}\)。于是\(\beta = \varphi(\alpha_{1} + \alpha_{2}) = \varphi(\alpha_{1}) + \varphi(\alpha_{2}) \in \varphi(V_{1}) + \varphi(V_{2})\)
反之,任取\(\beta \in \varphi(V_{1}) + \varphi(V_{2})\),则存在\(\beta_{1} \in \varphi(V_{1}), \beta_{2} \in \varphi(V_{2})\)使得\(\beta = \beta_{1} + \beta_{2}\)。由定义,存在\(\alpha_{1} \in V_{1}, \alpha_{2} \in V_{2}\)使得\(\beta_{1} = \varphi(\alpha_{1}), \beta_{2} = \varphi(\alpha_{2})\)。于是\(\beta = \varphi(\alpha_{1}) + \varphi(\alpha_{2}) = \varphi(\alpha_{1} + \alpha_{2})\),而\(\alpha_{1} + \alpha_{2} \in V_{1} + V_{2}\),故\(\beta \in \varphi(V_{1} + V_{2})\)。所以\(\varphi(V_{1} + V_{2}) = \varphi(V_{1}) + \varphi(V_{2})\)
再证第二个等式。任取\(\beta \in \varphi(V_{1} \cap V_{2})\),则存在\(\alpha \in V_{1} \cap V_{2}\)使得\(\beta = \varphi(\alpha)\)。由于\(\alpha \in V_{1}\)\(\alpha \in V_{2}\),所以\(\beta = \varphi(\alpha) \in \varphi(V_{1})\)\(\beta \in \varphi(V_{2})\),即\(\beta \in \varphi(V_{1}) \cap \varphi(V_{2})\)
反之,任取\(\beta \in \varphi(V_{1}) \cap \varphi(V_{2})\),则\(\beta \in \varphi(V_{1})\)\(\beta \in \varphi(V_{2})\)。存在\(\alpha_{1} \in V_{1}\)使得\(\beta = \varphi(\alpha_{1})\),也存在\(\alpha_{2} \in V_{2}\)使得\(\beta = \varphi(\alpha_{2})\)。于是\(\varphi(\alpha_{1}) = \varphi(\alpha_{2})\),由\(\varphi\)是单射(同构映射是双射)得\(\alpha_{1} = \alpha_{2}\),记\(\alpha = \alpha_{1} = \alpha_{2}\),则\(\alpha \in V_{1} \cap V_{2}\),且\(\beta = \varphi(\alpha) \in \varphi(V_{1} \cap V_{2})\)。所以\(\varphi(V_{1} \cap V_{2}) = \varphi(V_{1}) \cap \varphi(V_{2})\)
3.
\(A \in \F^{n \times n}\)是可逆矩阵,定义\(\varphi_{A}: \F^{n} \to \F^{n}, \alpha \mapsto A \alpha\),证明:\(\varphi_{A}\)是同构映射。
解答.
首先,\(\varphi_{A}\)是线性映射:对任意\(\alpha, \beta \in \F^{n}\)\(c \in \F\),有
\begin{equation*} \varphi_{A}(\alpha + \beta) = A(\alpha + \beta) = A\alpha + A\beta = \varphi_{A}(\alpha) + \varphi_{A}(\beta), \end{equation*}
\begin{equation*} \varphi_{A}(c\alpha) = A(c\alpha) = k(A\alpha) = c \varphi_{A}(\alpha). \end{equation*}
其次,由于\(A\)可逆,定义映射\(\psi: \F^{n} \to \F^{n}\)\(\psi(\alpha) = A^{-1}\alpha\),则\(\psi\)也是线性映射,且对任意\(\alpha \in \F^{n}\)
\begin{equation*} (\psi \varphi_{A})(\alpha) = \psi(A\alpha) = A^{-1}(A\alpha) = \alpha, \end{equation*}
\begin{equation*} (\varphi_{A} \psi)(\alpha) = \varphi_{A}(A^{-1}\alpha) = A(A^{-1}\alpha) = \alpha. \end{equation*}
所以,\(\psi \varphi_{A} = \varphi_{A} \psi ={\rm id}_{\F^n}\)。因此\(\varphi_{A}\)是可逆线性映射,从而是同构映射。
4.
考虑第6.1.5节的习题6.1.5.4中的\(\R\)上的线性空间
\begin{equation*} H = \left\{ \begin{pmatrix}\alpha & \beta \\ -\overline{\beta} & \overline{\alpha}\end{pmatrix} \middle| \alpha, \beta \in \C \right\}. \end{equation*}
证明:\(H\)\(\R^{4}\)同构,并写出\(H\)\(\R^{4}\)的一个同构映射。
解答.
\(\alpha = a + b {\rm i}, \beta = c + d {\rm i}\),其中\(a,b,c,d \in \R\),则
\begin{align*} \begin{pmatrix}\alpha & \beta \\ -\overline{\beta} & \overline{\alpha}\end{pmatrix} \amp = \begin{pmatrix}a+b{\rm i}&c+d{\rm i} \\ -c+d{\rm i}&a-b{\rm i}\end{pmatrix} \\ \amp = a \begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix} + b \begin{pmatrix}{\rm i} & 0 \\ 0 & -{\rm i}\end{pmatrix} + c \begin{pmatrix}0 & 1 \\ -1 & 0\end{pmatrix} + d \begin{pmatrix}0 & {\rm i} \\ {\rm i} & 0\end{pmatrix}. \end{align*}
\ 记
\begin{equation*} I = \begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix},\quad J = \begin{pmatrix}{\rm i} & 0 \\ 0 & -{\rm i}\end{pmatrix},\quad K = \begin{pmatrix}0 & 1 \\ -1 & 0\end{pmatrix},\quad L = \begin{pmatrix}0 & {\rm i} \\ {\rm i} & 0\end{pmatrix}. \end{equation*}
\(I, J, K, L\)\(H\)\(\R\)上的一组基(线性无关且张成\(H\)),故\(\dim_{\R} H = 4\)。根据定理6.5.9或推论6.5.10\(H \cong \R^{4}\)
定义映射\(\varphi: H \to \R^{4}\)
\begin{equation*} \varphi\left( aI + bJ + cK + dL \right) = (a, b, c, d)^{\top}. \end{equation*}
由之前的讨论\((I,J,K,L)\)\(H\)的一个基,因此\(\varphi\)\(H\)中向量到其在\((I,J,K,L)\)下坐标的映射。由例6.5.2\(\varphi\)是同构映射。

提高题.

5.
设有矩阵\(A \in \F^{n \times n}\),令\(M = \{ A B \mid B \in \F^{n \times n}\} \subseteq \F^{n \times n}\)
  1. 证明:\(M\)\(\F^{n \times n}\)的子空间;
  2. \(A\)的秩为\(r(A) = r\),证明:\(M \cong \F^{r \times n}\)
解答.
  1. 显然\(0 = A0 \in M\),故\(M\)非空。对任意\(X,Y \in M\),存在\(B,C \in \F^{n \times n}\)使得\(X = AB\)\(Y = AC\)。则\(X+Y = A(B+C) \in M\)。对任意\(c \in \F\)\(cX = A(cB) \in M\)。所以\(M\)对加法和数乘封闭,从而是\(\F^{n \times n}\)的子空间。
  2. 考虑满秩分解:由于\(r(A)=r\),存在列满秩矩阵\(L \in \F^{n \times r}\)和行满秩矩阵\(R \in \F^{r \times n}\)使得\(A = LR\)。定义映射\(\varphi: \F^{r \times n}\to M\)\(\Phi(C) = LC\)。容易验证\(\varphi\)是线性映射。下面证明\(\varphi\)是同构映射。
    \(\varphi\)是满射:对任意\(X \in M\),存在\(B \in \F^{n \times n}\)使得\(X = AB = LRB\)。令\(C = RB \in \F^{r \times n}\),则\(\varphi(C) = LC = LRB = X\)
    \(\varphi\)是单射:假设存在\(C_{1}, C_{2} \in \F^{r \times n}\)使得\(\varphi(C_{1})= \varphi(C_{2})\),则由\(\varphi\)的线性性有\(\varphi(C_{1} - C_{2}) = L(C_{1} - C_{2}) = 0\)。由于\(L\)列满秩,\(L\)的列线性无关,故\(L(C_{1} - C_{2})=0\)蕴含\(C_{1} - C_{2} = 0\)(以\(C_{1} - C_{2}\)的每一列作为系数对\(L\)的列向量进行线性组合都得到零向量)。所以,\(C_{1} = C_{2}\),即\(\varphi\)是单射。
    所以\(\varphi\)是线性双射,从而\(M \cong \F^{r \times n}\)
6.
\(A,B \in F^{m \times n}\)满足\(r(A) = r(B)\),设\(U\)\(AX=0\)的解空间,\(W\)\(BX=0\)的解空间,证明:\(U \cong W\),并给出\(U\)\(W\)的一个同构映射。
解答.
\(r(A)=r(B)=r\)。由于秩相等,存在可逆矩阵\(P \in \F^{m \times m}\)\(Q \in \F^{n \times n}\)使得\(B = PAQ\)\(A\)\(B\)相抵)。定义映射\(\varphi: U \to W\)\(\varphi(\alpha) = Q^{-1}\alpha, \forall \alpha \in U\)
  • 首先验证\(\varphi\)良定义:若\(\alpha \in U\),则\(A \alpha=0\)。计算\(B\varphi(\alpha) = B Q^{-1}\alpha = PAQ Q^{-1}\alpha = PA\alpha = P0 = 0\),所以\(\varphi(\alpha) \in W\)
  • \(\varphi\)是线性映射:对任意\(\alpha, \beta \in U\)\(c \in \F\),有\(\varphi(\alpha+\beta)=Q^{-1}(\alpha+\beta)=Q^{-1}\alpha+Q^{-1}\beta=\varphi(\alpha)+\varphi(\beta)\)\(\varphi(c \alpha)=Q^{-1}(c \alpha)=c Q^{-1}\alpha = c\varphi(\alpha)\)
  • \(\varphi\)是单射:若存在\(\alpha, \alpha' \in U\)使得\(\varphi(\alpha)=\varphi(\alpha')\),则\(Q^{-1}(\alpha - \alpha')=0\),故\(\alpha=\alpha'\)。所以\(\varphi\)是单射。
  • \(\varphi\)是满射:对任意\(\beta \in W\),有\(B \beta =0\)。令\(\alpha = Q \beta\),则\(A\alpha = AQ\beta\)。由\(B=PAQ\)\(P\)可逆,\(B\beta=0\)等价于\(AQ\beta=0\),所以\(A\alpha=0\),即\(\alpha \in U\)。且\(\varphi(\alpha)=Q^{-1}\alpha = Q^{-1}Q\beta = \beta\)。所以\(\varphi\)是满射。
因此\(\varphi\)是同构映射,故\(U \cong W\)
7.
\(V,V'\)都是\(n\)维线性空间,\(\varphi\)\(V\)\(V'\)的线性映射,证明:\(\varphi\)是单射当且仅当\(\varphi\)是满射。(换言之,对于两个维数相同的线性空间之间的线性映射,我们仅需要单射或双射条件就能保证它是同构映射)
解答.
先证必要性:设\(\varphi\)是单射。 设\((\xi_{1}, \ldots, \xi_{n})\)\(V\)的一个基,则基向量在\(V\)中线性无关。注意到命题6.5.4的证明中,仅用到了\(\varphi\)是单射的性质,所以其结论在此也使用,即\(\varphi(\xi_{1}), \ldots, \varphi(\xi_{n})\)\(V'\)中也线性无关。又因为\(V'\)的维数是\(n\),所以\((\varphi(\xi_{1}), \ldots, \varphi(\xi_{n}))\)\(V'\)的基。
再证充分性:设\(\varphi\)是满射。设\((\xi_{1}, \ldots, \xi_{n})\)\(V\)的一个基,我们首先证明\((\varphi(\xi_{1}), \ldots, \varphi(\xi_{n}))\)\(V'\)的一个基。
\(\varphi\)是满射,对于任意\(\beta \in V'\),可以找到\(\alpha \in V\)使得\(\varphi(\alpha) = \beta\)。设\(\alpha = c_{1} \xi_{1} + \cdots + c_{n} \xi_{n}\)。则由\(\varphi\)是线性映射可得
\begin{equation*} \beta = \varphi(\alpha) = c_{1} \varphi(\xi_{1}) + \cdots + c_{n} \varphi(\xi_{n}), \end{equation*}
即,任意\(\beta \in V'\)可由\(\varphi(\xi_{1}), \ldots, \varphi(\xi_{n})\)线性表出。因为\(V'\)的维数是\(n\),根据定理4.4.16可知\((\varphi(\xi_{1}), \ldots, \varphi(\xi_{n}))\)\(V'\)的基。
因此,对于任意\(\alpha = \sum_{i=1}^{n} c_{i} \xi_{i}\)\(\alpha' = \sum_{i=1}^{n} c'_{i} \xi_{i}\),若\(\varphi(\alpha) = \varphi(\alpha')\),则因\(\varphi\)是线性映射,所以
\begin{equation*} \sum_{i=1}^{n} c_{i} \varphi(\xi_{i}) = \sum_{i=1}^{n} c'_{i} \varphi(\xi_{i}). \end{equation*}
由于\((\varphi(\xi_{1}), \ldots, \varphi(\xi_{n}))\)\(V'\)的基,任意\(V'\)中向量的表出方式唯一,故\(c_{i} = c'_{i}, \forall i \in [n]\)。所以\(\alpha = \alpha'\)\(\varphi\)是单射。

挑战题.