求一般的二阶线性方程组
\begin{equation}
\left\{\begin{array}{rcl}
a_{11}x_1+a_{12}x_2 & = & b_1, \\
a_{21}x_1+a_{22}x_2 & = & b_2
\end{array}\right.\tag{3.1.1}
\end{equation}
的公式解。
解答.
用消元法解线性方程组:第一个方程\(\times a_{22}\)减去第二个方程\(\times a_{12}\),消去\(x_2\),整理得 :
\begin{equation*}
({a_{11}a_{22}-a_{12}a_{21}})x_1=b_1a_{22}-b_2a_{12};
\end{equation*}
同理,消去\(x_1\)后整理可得:
\begin{equation*}
({a_{11}a_{22}-a_{12}a_{21}})x_2=a_{11}b_2-b_1a_{21}.
\end{equation*}
于是原方程的公式解为:
\begin{equation*}
x_1=\frac{b_1a_{22}-b_2a_{12}}{a_{11}a_{22}-a_{12}a_{21}},\quad x_2=\frac{a_{11}b_2-b_1a_{21}}{a_{11}a_{22}-a_{12}a_{21}}.
\end{equation*}