再看一般情形:
\begin{equation}
j_1,\ldots, j_s,j_{s+1},\ldots,j_{t-1},j_t,\ldots,j_n\tag{3.2.3}
\end{equation}
\begin{equation*}
\downarrow (j_s,j_t)
\end{equation*}
\begin{equation}
j_1,\ldots, j_t,j_{s+1},\ldots,j_{t-1},j_s,\ldots,j_n\tag{3.2.4}
\end{equation}
\begin{equation*}
j_1,\ldots, j_s,j_{s+1},\ldots,j_{t-1},j_t,\ldots,j_n
\end{equation*}
\begin{equation*}
\downarrow (j_s,j_{s+1})
\end{equation*}
\begin{equation*}
j_1,\ldots,j_{s-1}, j_{s+1},j_s,j_{s+2},\ldots,j_{t-1},j_t,\ldots,j_n
\end{equation*}
\begin{equation*}
\downarrow (j_s,j_{s+2})
\end{equation*}
\begin{equation*}
j_1,\ldots,j_{s-1}, j_{s+1},j_{s+2},j_s,j_{s+3},\ldots,j_{t-1},j_t,\ldots,j_n
\end{equation*}
\begin{equation*}
\downarrow (j_s,j_{s+3})
\end{equation*}
\begin{equation*}
\vdots
\end{equation*}
\begin{equation*}
\downarrow (j_s,j_t)
\end{equation*}
\begin{equation*}
j_1,\ldots,j_{s-1}, j_{s+1},\ldots,j_{t-1},j_t,j_{s},j_{t+1},\ldots,j_n
\end{equation*}
\begin{equation*}
\downarrow (j_{t-1},j_t)
\end{equation*}
\begin{equation*}
j_1,\ldots,j_{s-1}, j_{s+1},\ldots,j_{t-2},j_t,j_{t-1},j_{s},j_{t+1},\ldots,j_n
\end{equation*}
\begin{equation*}
\downarrow (j_{t-2},j_t)
\end{equation*}
\begin{equation*}
j_1,\ldots,j_{s-1}, j_{s+1},\ldots,j_{t-3},j_t,j_{t-2},j_{t-1},j_{s},j_{t+1},\ldots,j_n
\end{equation*}
\begin{equation*}
\downarrow (j_{t-3},j_t)
\end{equation*}
\begin{equation*}
\vdots
\end{equation*}
\begin{equation*}
\downarrow (j_{s+1},j_t)
\end{equation*}
\begin{equation*}
j_1,\ldots, j_t,j_{s+1},\ldots,j_{t-1},j_s,\ldots,j_n
\end{equation*}
这一共作了
\((t-s)+(t-s-1)=2(t-s)-1\)次相邻两数的对换。由于奇数次相邻两数的对换会改变排列的奇偶性,因此
(3.2.3) 与
(3.2.4)奇偶性相反。