设
\(n = \dim V, r = \dim \Ker \varphi\),
\((\xi_{1}, \ldots, \xi_{r})\)为核空间
\(\Ker \varphi\)的一个基。依据扩基定理
4.4.17,可通过添加向量
\(\xi_{r+1}, \ldots, \xi_{n} \in V\)构成
\(V\)的一组基
\((\xi_{1}, \ldots, \xi_{r}, \xi_{r+1}, \ldots, \xi_{n})\)。
要完成线性映射基本定理的证明,我们只需要证明
\((\varphi(\xi_{r+1}), \ldots, \varphi(\xi_{n}))\)是
\(\Ima \varphi\)的一个基,即
\(\varphi(\xi_{r+1}), \ldots, \varphi(\xi_{n})\)线性无关且可以线性表出
\(\Ima \varphi\)中的所有向量(见定义
4.4.11)。
我们首先说明\(\varphi(\xi_{r+1}), \ldots, \varphi(\xi_{n}) \in U\)是线性无关向量组。设
\begin{equation*}
c_{r+1}\varphi(\xi_{r+1}) + \cdots + c_{n} \varphi(\xi_{n}) = 0,
\end{equation*}
则由\(\varphi\)保持线性运算可得
\begin{equation*}
\varphi(c_{r+1}\xi_{r+1}+ \cdots + c_{n} \xi_{n}) = 0,
\end{equation*}
即\(c_{r+1}\xi_{r+1}+ \cdots + c_{n} \xi_{n} \in \Ker \varphi\)。由于\((\xi_{1}, \ldots, \xi_{r})\)是\(\Ker \varphi\)的基,所以存在\(c_{1}, \ldots, c_{r} \in \F\)使得
\begin{equation*}
c_{1} \xi_{1} + \cdots + c_{r} \xi_{r} = c_{r+1}\xi_{r+1}+ \cdots + c_{n} \xi_{n}.
\end{equation*}
又因为\(\xi_{1}, \ldots, \xi_{n}\)线性无关(是\(V\)的基),我们可知\(c_{r+1}= \cdots = c_{n} = 0 = c_{1} = \cdots = c_{r}\)。因此\(\varphi(\xi_{r+1}), \ldots, \varphi(\xi_{n})\)线性无关。
下面证明任意\(\beta \in \Ima \varphi\)可以由\(\varphi(\xi_{r+1}), \ldots, \varphi(\xi_{n})\)线性表出。由像空间的定义,存在\(\alpha \in V\)使得\(\beta = \varphi(\alpha)\)。又因为\((\xi_{1}, \ldots, \xi_{n})\)是\(V\)的基,\(\alpha\)可由\(\xi_{1}, \ldots, \xi_{n}\)线性表出,即存在\(a_{1}, \ldots, a_{n}\)使得
\begin{equation*}
\alpha = a_{1} \xi_{1} + \cdots + a_{r} \xi_{r} + a_{r+1}\xi_{r+1}+ \cdots + a_{n} \xi_{n}.
\end{equation*}
等式两边同时作用线性映射\(\varphi\)得
\begin{align*}
\beta = \varphi(\alpha) \amp = \varphi(a_{1} \xi_{1} + \cdots + a_{r} \xi_{r} + a_{r+1}\xi_{r+1}+ \cdots + a_{n} \xi_{n})\\
\amp = a_{1} \varphi(\xi_{1}) + \cdots + a_{r} \varphi(\xi_{r}) + a_{r+1}\varphi(\xi_{r+1}) + \cdots + a_{n} \varphi(\xi_{n}),
\end{align*}
其中最后一个等式是因为\(\varphi\)保持线性运算。注意到\(\xi_{1}, \ldots, \xi_{r} \in \Ker \varphi\),所以我们有
\begin{equation*}
\beta = a_{r+1}\varphi(\xi_{r+1}) + \cdots + a_{n} \varphi(\xi_{n}),
\end{equation*}
即\(\beta\)可由\(\varphi(\xi_{r+1}), \ldots, \varphi(\xi_{n})\)线性表出。