首先证明\(\varphi\)保持加法运算。设\(\alpha\)的坐标为\((a_{1}, \ldots, a_{n})^T\),\(\beta\)的坐标为\((b_{1}, \ldots, b_{n})^T\),即
\begin{equation*}
\alpha = a_{1} \xi_{1} + \cdots + a_{n} \xi_{n},
\end{equation*}
\begin{equation*}
\beta = b_{1} \xi_{1} + \cdots + b_{n} \xi_{n}.
\end{equation*}
所以,\(\alpha + \beta\)由基\((\xi_{1}, \ldots, \xi_{n})\)线性表出的唯一方式可写成
\begin{equation*}
\alpha + \beta = (a_{1}+b_{1}) \xi_{1} + \cdots + (a_{n} + b_{n}) \xi_{n},
\end{equation*}
即\((a_{1}+b_{1}, \ldots, a_{n} + b_{n})^T\)是\(\alpha + \beta\)的坐标。由\(\varphi\)的定义,
\begin{align*}
\varphi(\alpha + \beta) \amp = (a_{1}+b_{1}, \ldots, a_{n} + b_{n})^T \\
\amp = (a_{1}, \ldots, a_{n})^T + (b_{1}, \ldots, b_{n})^T \\
\amp = \varphi(\alpha) + \varphi(\beta).
\end{align*}
接着证明\(\varphi\)保持加法运算。设\(c \in \F\),则
\begin{equation*}
c \alpha = c a_{1} \xi_{1} + \cdots + c a_{n} \xi_{n},
\end{equation*}
即\((c a_{1}, \ldots, c a_{n})^T\)是\(c \alpha\)的坐标。由\(\varphi\)的定义,
\begin{align*}
\varphi(c\alpha)\amp = (c a_{1}, \ldots, c a_{n})^T \\
\amp = c (a_{1}, \ldots, a_{n})^T \\
\amp = c \varphi(\alpha).
\end{align*}