主要内容

高等代数教学辅导

练习 4.7 线性空间复习题

1.

\(U,V\)是数域\(\mathbb{F}\)上的线性空间,记
\begin{equation*} U\times V=\{(\alpha,\beta)\ |\ \alpha\in U,\beta\in V\}. \end{equation*}
\(\forall (\alpha_1,\beta_1),(\alpha_2,\beta_2)\in U\times V,\forall c\in\mathbb{F}\),规定
\begin{equation*} (\alpha_1,\beta_1)+(\alpha_2,\beta_2)=(\alpha_1+\alpha_2,\beta_1+\beta_2),\ c(\alpha_1,\beta_1)=(c \alpha_1,c \beta_1). \end{equation*}
  1. 证明:\(U\times V\)关于以上运算构成数域\(\mathbb{F}\)上的线性空间;
  2. 已知\(\dim U=m,\dim V=n\),求\(\dim (U\times V)\),并说明理由。
解答.
  1. \((0,0)\in U\times V\),所以\(U\times V\)是非空集合。
    对任意\((\alpha_1,\beta_1),(\alpha_2,\beta_2)\in U\times V,c\in\mathbb{F}\),由\(U,V\)是数域\(\mathbb{F}\)上的线性空间得
    \begin{equation*} (\alpha_1,\beta_1)+(\alpha_2,\beta_2)=(\alpha_1+\alpha_2,\beta_1+\beta_2)\in U\times V, \end{equation*}
    \begin{equation*} c(\alpha_1,\beta_1)=(c \alpha_1,c \beta_1)\in U\times V, \end{equation*}
    \(U\times V\)关于以上运算封闭。
    对任意\((\alpha_1,\beta_1),(\alpha_2,\beta_2),(\alpha_3,\beta_3)\in U\times V,c,d\in\mathbb{F}\),有
    1. \begin{equation*} \begin{array}{ccl} (\alpha_1,\beta_1)+(\alpha_2,\beta_2)&=&(\alpha_1+\alpha_2,\beta_1+\beta_2)\\ &=&(\alpha_2+\alpha_1,\beta_2+\beta_1)\\&=&(\alpha_2,\beta_2)+(\alpha_1,\beta_1); \end{array} \end{equation*}
    2. \begin{equation*} \begin{array}{ccl} & &\left((\alpha_1,\beta_1)+(\alpha_2,\beta_2)\right)+(\alpha_3,\beta_3)\\ &=&(\alpha_1+\alpha_2,\beta_1+\beta_2)+(\alpha_3,\beta_3)\\ &=&\left((\alpha_1+\alpha_2)+\alpha_3,(\beta_1+\beta_2)+\beta_3\right)\\&=&\left(\alpha_1+(\alpha_2+\alpha_3),\beta_1+(\beta_2+\beta_3)\right)\\ &=&(\alpha_1,\beta_1)+(\alpha_2+\alpha_3,\beta_2+\beta_3)\\ &=&(\alpha_1,\beta_1)+\left((\alpha_2,\beta_2)+(\alpha_3,\beta_3)\right); \end{array} \end{equation*}
    3. 存在\((0,0)\in U\times V\),使得对任意\((\alpha,\beta)\in U\times V\),有
      \begin{equation*} (\alpha,\beta)+(0,0)=(\alpha,\beta); \end{equation*}
    4. 对任意\((\alpha,\beta)\in U\times V\),存在\((-\alpha,-\beta)\in U\times V\),使得
      \begin{equation*} (\alpha,\beta)+(-\alpha,-\beta)=(0,0); \end{equation*}
    5. \begin{equation*} \begin{array}{ccl} c\left((\alpha_1,\beta_1)+(\alpha_2,\beta_2)\right)&=&c(\alpha_1+\alpha_2,\beta_1+\beta_2)\\ &=&\left(c(\alpha_1+\alpha_2),c(\beta_1+\beta_2)\right)\\ &=&(c\alpha_1+c\alpha_2,c\beta_1+c\beta_2)\\ &=&(c\alpha_1,c\beta_1)+(c\alpha_2, c\beta_2)\\ &=&c(\alpha_1,\beta_1)+c(\alpha_2,\beta_2) \end{array} \end{equation*}
    6. \begin{equation*} \begin{array}{ccl} (c+d)(\alpha_1,\beta_1)&=&\left((c+d)\alpha_1,(c+d)\beta_1\right)\\&=&(c\alpha_1+d\alpha_1,c\beta_1+d\beta_1)\\ &=&(c\alpha_1,c\beta_1)+(d\alpha_1,d\beta_1)\\&=&c(\alpha_1,\beta_1)+d(\alpha_1,\beta_1); \end{array} \end{equation*}
    7. \begin{equation*} \begin{array}{ccl} (cd)(\alpha_1,\beta_1)&=&\left((cd)\alpha_1,(cd)\beta_1\right)\\&=&\left(c(d\alpha_1),c(d\beta_1)\right)\\ &=&c(d\alpha_1,d\beta_1)\\&=&c\left(d(\alpha_1,\beta_1)\right); \end{array} \end{equation*}
    8. \(\displaystyle 1(\alpha_1,\beta_1)=(1\alpha_1,1\beta_1)=(\alpha_1,\beta_1).\)
    因此\(U\times V\)关于以上运算构成数域\(\mathbb{F}\)上的线性空间。
  2. \(\xi_1,\xi_2,\cdots ,\xi_m\)\(U\)的一个基,\(\eta_1,\eta_2,\cdots ,\eta_n\)\(V\)的一个基。我们断言,
    \begin{equation*} (\xi_1,0),(\xi_2,0),\cdots ,(\xi_m,0),(0,\eta_1),(0,\eta_2),\cdots ,(0,\eta_n) \end{equation*}
    \(U\times V\)的一个基。
    事实上,设
    \begin{equation*} k_1(\xi_1,0)+\cdots +k_m(\xi_m,0)+l_1(0,\eta_1)+\cdots +l_n(0,\eta_n)=(0,0), \end{equation*}
    \((k_1 \xi_1+k_2 \xi_2+\cdots +k_m \xi_m,l_1\eta_1+l_2\eta_2+\cdots +l_n\eta_n)=(0,0),\)
    \begin{equation*} k_1 \xi_1+k_2 \xi_2+\cdots +k_m \xi_m=0\mbox{且}l_1\eta_1+l_2\eta_2+\cdots +l_n\eta_n=0. \end{equation*}
    \(\xi_1,\xi_2,\cdots ,\xi_m\)\(\eta_1,\eta_2,\cdots ,\eta_n\)线性无关,得
    \begin{equation*} k_1=k_2=\cdots =k_m=l_1=l_2=\cdots =l_n=0. \end{equation*}
    \((\xi_1,0),(\xi_2,0),\cdots ,(\xi_m,0),(0,\eta_1),(0,\eta_2),\cdots ,(0,\eta_n)\)线性无关。
    另一方面,对任意\((\alpha,\beta)\in U\times V\),因\(\alpha\in U\)\(\xi_1,\xi_2,\cdots ,\xi_m\)\(U\)的一个基,所以存在\(a_1,a_2,\cdots ,a_m\in\mathbb{F}\)使得\(\alpha=a_1 \xi_1+a_2 \xi_2+\cdots +a_m \xi_m\)。同理,存在\(b_1,b_2,\cdots ,b_n\in\mathbb{F}\),使得\(\beta=b_1 \eta_1+b_2\eta_2+\cdots +b_n\eta_n\)。于是,存在\(a_1,a_2,\cdots ,a_m,b_1,b_2,\cdots ,b_n\in\mathbb{F}\),使得
    \begin{equation*} (\alpha,\beta)=a_1(\xi_1,0)+\cdots +a_m(\xi_m,0)+b_1(0,\eta_1)+\cdots +b_n(0,\eta_n). \end{equation*}
    因此\((\xi_1,0),\cdots ,(\xi_m,0),(0,\eta_1),\cdots ,(0,\eta_n)\)\(U\times V\)的一个基,
    \begin{equation*} \dim (U\times V)=m+n. \end{equation*}

2.

\(a_1,a_2,a_3,a_4\)是数域\(\mathbb{F}\)中两两互异的数,试证明:
\begin{equation*} A_1=\begin{pmatrix} 1&a_1\\a_1^2&a_1^3 \end{pmatrix},A_2=\begin{pmatrix} 1&a_2\\a_2^2&a_2^3 \end{pmatrix},A_3=\begin{pmatrix} 1&a_3\\a_3^2&a_3^3 \end{pmatrix},A_4=\begin{pmatrix} 1&a_4\\a_4^2&a_4^3 \end{pmatrix} \end{equation*}
是数域\(\mathbb{F}\)上线性空间\(\mathbb{F}^{2\times 2}\)的一个基。
解答.
因为\(E_{11},E_{12},E_{21},E_{22}\)\(\mathbb{F}^{2\times 2}\)的一个基,且
\begin{equation*} (A_1,A_2,A_3,A_4)=(E_{11},E_{12},E_{21},E_{22})\begin{pmatrix} 1&1&1&1\\a_1&a_2&a_3&a_4\\a_1^2&a_2^2&a_3^2&a_4^2\\a_1^3&a_2^3&a_3^3&a_4^3 \end{pmatrix}, \end{equation*}
\(a_1,a_2,a_3,a_4\)是数域\(\mathbb{F}\)中两两互异的数,得
\begin{equation*} \begin{vmatrix} 1&1&1&1\\a_1&a_2&a_3&a_4\\a_1^2&a_2^2&a_3^2&a_4^2\\a_1^3&a_2^3&a_3^3&a_4^3 \end{vmatrix}=\prod\limits_{1\leq i<j\leq 4} (a_j-a_i)\neq 0, \end{equation*}
\(A_1,A_2,A_3,A_4\)是数域\(\mathbb{F}\)上线性空间\(\mathbb{F}^{2\times 2}\)的一个基。

3.

数域\(\mathbb{F}\)\(n\)阶方阵\(\begin{pmatrix} a_1&a_2&\cdots&a_n\\a_n&a_1&\ddots&\vdots\\\vdots&\ddots&\ddots&a_2\\a_2&\cdots&a_n&a_1 \end{pmatrix}\)称为循环矩阵。用\(U\)表示\(\mathbb{F}\)上所有\(n\)阶循环矩阵组成的集合。证明:\(U\)\(\mathbb{F}^{n\times n}\)的一个子空间,并求\(U\)的一个基和维数。
解答.
\(0\in U\),所以\(U\)\(\mathbb{F}^{n\times n}\)的非空子集。对任意\(A,B\in U,\ c\in\mathbb{F}\),有
\begin{equation*} A+B=\begin{pmatrix} a_1+b_1&a_2+b_2&\cdots&a_n+b_n\\a_n+b_n&a_1+b_1&\ddots&\vdots\\\vdots&\ddots&\ddots&a_2+b_2\\a_2+b_2&\cdots&a_n+b_n&a_1+b_1 \end{pmatrix}\in U, \end{equation*}
\(cA=\begin{pmatrix} ca_1&ca_2&\cdots&ca_n\\ca_n&ca_1&\ddots&\vdots\\\vdots&\ddots&\ddots&ca_2\\ca_2&\cdots&ca_n&ca_1 \end{pmatrix}\in U\), 故\(U\)\(\mathbb{F}^{n\times n}\)的一个子空间。
\(A_i=\begin{pmatrix} 0&E_{n-i}\\E_i&0 \end{pmatrix}\),我们断言\(E_n,A_1,A_2,\cdots ,A_{n-1}\)\(U\)的一个基。事实上,设\(k_0E_n+k_1A_1+k_2A_2+\cdots +k_{n-1}A_{n-1}=0\),即
\begin{equation*} \begin{pmatrix} k_0&k_1&\cdots&k_{n-1}\\k_{n-1}&k_0&\ddots&\vdots\\\vdots&\ddots&\ddots&k_1\\k_1&\cdots&k_{n-1}&k_0 \end{pmatrix}=0, \end{equation*}
\(k_0=k_1=k_2=\cdots =k_{n-1}=0\),故\(E_n,A_1,A_2,\cdots ,A_{n-1}\)线性无关。
另一方面,对任意\(A=\begin{pmatrix} a_1&a_2&\cdots&a_n\\a_n&a_1&\ddots&\vdots\\\vdots&\ddots&\ddots&a_2\\a_2&\cdots&a_n&a_1 \end{pmatrix}\in U\),存在\(a_1,a_2,\cdots ,a_n\in\mathbb{F}\),使得
\begin{equation*} A=a_1E_n+a_2A_1+a_3A_2+\cdots +a_nA_{n-1}. \end{equation*}
因此\(E_n,A_1,A_2,\cdots ,A_{n-1}\)\(U\)的一个基,\(\dim U=n\)

4.

设线性空间\(\mathbb{F}^{2\times 2}\)的两个基
\begin{equation*} \begin{array}{c} (I):\ A_1=\begin{pmatrix} 1&0\\0&0 \end{pmatrix},A_2=\begin{pmatrix} 1&1\\0&0 \end{pmatrix},A_3=\begin{pmatrix} 1&1\\1&0 \end{pmatrix},A_4=\begin{pmatrix} 1&1\\1&1 \end{pmatrix}\\ (II):\ B_1=\begin{pmatrix} 1&0\\1&1 \end{pmatrix},B_2=\begin{pmatrix} 0&1\\1&1 \end{pmatrix},B_3=\begin{pmatrix} 1&1\\1&0 \end{pmatrix},B_4=\begin{pmatrix} 1&1\\0&1 \end{pmatrix}. \end{array} \end{equation*}
  1. 求由基\((I)\)到基\((II)\)的过渡矩阵;
  2. \(\mathbb{F}^{2\times 2}\)中在基\((I)\)和基\((II)\)下有相同坐标的矩阵;
  3. \(W_1=\langle A_1,A_2\rangle , W_2=\langle B_1,B_2\rangle\)
    1. \(W_1+W_2\)的一个基和维数;
    2. \(W_1\bigcap W_2\)的一个基和维数;
    3. \(\mathbb{F}^{2\times 2}=W_1\oplus W_2\)是否成立?为什么?
解答.
  1. 因为
    \begin{equation*} (A_1,A_2,A_3,A_4)=(E_{11},E_{12},E_{21},E_{22})C, \end{equation*}
    \begin{equation*} (B_1,B_2,B_3,B_4)=(E_{11},E_{12},E_{21},E_{22})D, \end{equation*}
    其中
    \begin{equation*} C=\begin{pmatrix} 1&1&1&1\\ 0&1&1&1\\ 0&0&1&1\\ 0&0&0&1 \end{pmatrix},D=\begin{pmatrix} 1&0&1&1\\ 0&1&1&1\\ 1&1&1&0\\ 1&1&0&1 \end{pmatrix}, \end{equation*}
    所以从基\((I)\)到基\((II)\)的过渡矩阵为
    \begin{equation*} M=C^{-1}D=\begin{pmatrix} 1&-1&0&0\\-1&0&0&1\\0&0&1&-1\\1&1&0&1 \end{pmatrix}. \end{equation*}
  2. \(A\)在基\((I)\)下与基\((II)\)下有相同的坐标为\(X=( x_1,x_2,x_3,x_4)^T\),则由坐标变换公式得
    \begin{equation*} X=MX\mbox{,即}(M-E)X=0, \end{equation*}
    解得\(X=k(0,0,1,0)^T,\forall k\in \mathbb{F}\)。因此
    \begin{equation*} A=(A_1,A_2,A_3,A_4)X=kA_3=\begin{pmatrix} k&k\\k&0 \end{pmatrix}. \end{equation*}
    1. \(W_1+W_2=\langle A_1,A_2,B_1,B_2\rangle\),因
      \begin{equation*} (A_1,A_2,B_1,B_2)=(E_{11},E_{12},E_{21},E_{22})\begin{pmatrix} 1&1&1&0\\0&1&0&1\\0&0&1&1\\0&0&1&1 \end{pmatrix}, \end{equation*}
      \begin{equation*} \begin{pmatrix} 1&1&1&0\\0&1&0&1\\0&0&1&1\\0&0&1&1 \end{pmatrix}\rightarrow \begin{pmatrix} 1&1&1&0\\0&1&0&1\\0&0&1&1\\0&0&0&0 \end{pmatrix}, \end{equation*}
      所以\(A_1,A_2,B_1\)\(W_1+W_2\)的一个基,\(\dim (W_1+W_2)=3\)
    2. 对任意\(A=x_1A_1+x_2A_2=y_1B_1+y_2B_2\in W_1\bigcap W_2\),有
      \begin{equation*} x_1A_1+x_2A_2-y_1B_1-y_2B_2=0, \end{equation*}
      \(\begin{pmatrix} 1&1&-1&0\\0&1&0&-1\\0&0&-1&-1\\0&0&-1&-1 \end{pmatrix}\begin{pmatrix} x_1\\x_2\\y_1\\y_2 \end{pmatrix}=0\),解得\(\left\{\begin{matrix} x_1=-2k\\x_2=k\\y_1=-k\\y_2=k \end{matrix}\right. ,\forall k\in\mathbb{F}\)。故
      \begin{equation*} A=k(B_2-B_1),\ \forall k\in\mathbb{F}, \end{equation*}
      因此\(B_2-B_1=\begin{pmatrix} -1&1\\0&0 \end{pmatrix}\)\(W_1\bigcap W_2\)的一个基,\(\dim(W_1\bigcap W_2)=1\)
    3. 由 ii 知\(W_1\bigcap W_2\neq 0\),故\(W_1+W_2\)不是直和,\(\mathbb{F}^{2\times 2}=W_1\oplus W_2\)不成立。

5.

\(U,W\)是线性空间\(V\)的两个子空间,且\(U\subseteq W\)。证明:若\(R\)\(U\)的补空间,即\(V=U\oplus R\),则\(W=U\oplus (R\bigcap W)\)
解答.
一方面,由\(U+R\)是直和知\(U\bigcap R=0\),又\(U\subseteq W\),故
\begin{equation*} U\cap (R\cap W)= (U\cap W)\cap R=U\cap R=0. \end{equation*}
另一方面,对任意\(\alpha\in W\),由\(V=U+R\)知:存在\(\beta\in U,\gamma\in R\),使得
\begin{equation*} \alpha=\beta+\gamma, \end{equation*}
这里\(\alpha\in W,\beta\in U\subseteq W\),故\(\gamma=\alpha- \beta\in W\),即\(\gamma\in R\bigcap W\)。因此
\begin{equation*} W\subseteq U+(R\bigcap W). \end{equation*}
显然\(U+(R\bigcap W)\subseteq W\),故\(W=U+(R\bigcap W)\)
综上,\(W=U\oplus (R\bigcap W)\)