设 \(B(\lambda)\) 是\(\lambda\)-矩阵\(\lambda E -A\)的伴随矩阵,则
\begin{equation}
B(\lambda)(\lambda E-A)= \det(\lambda E-A) E= f_A(\lambda)E. \tag{6.1}
\end{equation}
\(B(\lambda)\)的每一个元素都是矩阵\(\lambda E-A\)的某一个\(n-1\)阶代数余子式,所以这些元素都是次数不超过\(n-1\)的关于\(\lambda\)的一元多项式,从而\(B(\lambda)\) 可拆分为
\begin{equation*}
B(\lambda)= \lambda^{n-1}B_{n-1}+\lambda^{n-2}B_{n-2}\cdots +B_0,
\end{equation*}
这里\(B_i (i=0,1,\ldots,n-1)\)都是\(\mathbb{F}\)上的\(n\)阶方阵。代入\(B(\lambda)(\lambda E-A)\)得:
\begin{equation}
\begin{array}{rcl}
& & B(\lambda)(\lambda E-A) = (\lambda^{n-1}B_{n-1}+\lambda^{n-2}B_{n-2}\cdots +B_0)(\lambda E-A)\\
& = & \lambda^n B_{n-1} +\lambda^{n-1}(B{n-2}-B_{n-1}A)+\cdots+\lambda(B_0-B_{1}A) - B_0A.
\end{array}\tag{6.2}
\end{equation}
设\(A\)的特征多项式\(f_A(\lambda)=\lambda^n+a_{n-1}\lambda^{n-1}+\cdots+a_0\),则
\begin{equation}
f_A(\lambda)E=\lambda^n E+a_{n-1}\lambda^{n-1}E+\cdots+a_0E.\tag{6.3}
\end{equation}
\begin{equation}
\left\{\begin{array}{l}
B_{n-1}=E,&\\
B_{n-2}-B_{n-1}A=a_{n-1}E,&\\
\vdots&\\
B_0-B_1A=a_1E,&\\
-B_0A=a_0E&
\end{array}\right.\tag{6.4}
\end{equation}
用
\(A^n,A^{n-1},\cdots,A,E\)按顺序右乘
(6.4)得
\begin{equation}
\left\{\begin{array}{l}
B_{n-1}A^n=A^n,&\\
B_{n-2}A^{n-1}-B_{n-1}A^n=a_{n-1}A^{n-1},&\\
\vdots&\\
B_0A-B_1A^2=a_1A,&\\
-B_0A=a_0E&
\end{array}\right. \tag{6.5}
\end{equation}
把
(6.5)的所有等式加到一起,左边为0,右端即为
\(f_A(A)\),结论成立。