主要内容

高等代数教学辅导

1.3 分块矩阵

建设中!

子节 1.3.1 主要知识点

定义 1.3.1.

\(m\times n\)矩阵\(A\),先用若干条横线将其划成\(r\)块,再用若干条竖线将把它划成\(s\)块, 这样我们就得到了\(rs\)分块矩阵, 记为
\begin{equation*} A = (a_{ij})_{m\times n} =\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1s}\\ A_{21} & A_{22} & \cdots & A_{2s}\\ \vdots & \ddots & \ddots & \vdots\\ A_{r1} & A_{r2} & \cdots & A_{rs} \end{pmatrix}=(A_{ij})_{r\times s}, \end{equation*}
其中\(A_{ij}\)\(m_i\times n_j\)矩阵, \(i = 1,\ 2,\ \ldots,\ r\)\(j = 1,\ 2,\ \ldots,\ s,\) 满足\(m = \sum_{i=1}^r m_i,\ n= \sum_{j=1}^s n_j\)\(A_{ij}\) 称为\(A\)的第\((i, j)\)块,\(A\)可记为\(A=(A_{ij})_{r\times s} \)
特殊划分
设矩阵\(A=(a_{ij})_{m\times n}\)
  • 按行分块\(A=\begin{pmatrix} A_1\\ A_2\\ \vdots\\ A_m \end{pmatrix}\),其中\(A_{i}= \begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{pmatrix} \)\(A_1,A_2,\ldots,A_m\)称为\(A\)的行向量组。
  • 按列分块\(A=\begin{pmatrix} B_1 & B_2 & \cdots & B_n \end{pmatrix}\),其中\(B_{j}= \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix} \)\(B_1,B_2,\ldots,B_n\)称为\(A\)的列向量组。
分块矩阵的加法
\(A\)\(B\)是两个\(m\times n\)矩阵,对它们用同样的分法分块:
\begin{equation*} A = \begin{pmatrix} A_{11} & \cdots & A_{1r}\\ \vdots & \ddots & \vdots\\ A_{s1} & \cdots & A_{sr} \end{pmatrix},\quad B = \begin{pmatrix} B_{11} & \cdots & B_{1r}\\ \vdots & \ddots & \vdots\\ B_{s1} & \cdots & B_{sr} \end{pmatrix} \end{equation*}
其中子块\(A_{ij}\)\(B_{ij}\)为同型矩阵,则
\begin{equation*} A+B = \begin{pmatrix} A_{11}+B_{11} & \cdots & A_{1r}+B_{1r}\\ \vdots & \ddots & \vdots\\ A_{s1}+B_{s1} & \cdots & A_{sr}+B_{sr} \end{pmatrix}. \end{equation*}
分块矩阵的数乘
设分块矩阵\(A = \begin{pmatrix} A_{11} & \cdots & A_{1r}\\ \vdots & \ddots & \vdots\\ A_{s1} & \cdots & A_{sr} \end{pmatrix}\)\(c\in \mathbb{F}\),则
\begin{equation*} cA = \begin{pmatrix} cA_{11} & \cdots & cA_{1r}\\ \vdots & \ddots & \vdots\\ cA_{s1} & \cdots & cA_{sr} \end{pmatrix} \end{equation*}
分块矩阵的乘法
\(A=(a_{ik})_{m\times p}\)\(B=(b_{kj})_{p\times n}\)分块成:
\begin{equation*} A = \begin{pmatrix} A_{11} & \cdots & A_{1t}\\ \vdots & \ddots & \vdots\\ A_{s1} & \cdots & A_{st} \end{pmatrix},\quad B = \begin{pmatrix} B_{11} & \cdots & B_{1r}\\ \vdots & \ddots & \vdots\\ B_{t1} & \cdots & B_{tr} \end{pmatrix} \end{equation*}
其中\(A_{i1},\ A_{i2},\ \ldots,\ A_{it} \)的列数分别等于\(B_{1j},\ B_{2j},\ \ldots,\ B_{tj} \)的行数,则
\begin{equation*} AB = \begin{pmatrix} C_{11} & \cdots & C_{1r}\\ \vdots & \ddots & \vdots\\ C_{s1} & \cdots & C_{sr} \end{pmatrix}, \end{equation*}
其中\(\displaystyle C_{ij}=\sum_{k=1}^t A_{ik}B_{kj},\ (i=1,\ 2,\ \ldots,\ s;\ j= 1,\ 2,\ \ldots,\ r)\)

1.3.2.

  • \(A=\begin{pmatrix} A_1 & 0 & \cdots & 0\\ 0 & A_2 & \ddots & \vdots\\ \vdots & \ddots &\ddots & 0\\ 0 & \cdots & 0 & A_s \end{pmatrix}\)\(B=\begin{pmatrix} B_1 & 0 & \cdots & 0\\ 0 & B_2 & \ddots & \vdots\\ \vdots & \ddots &\ddots & 0\\ 0 & \cdots & 0 & B_s \end{pmatrix}\),其中\(A_i\)\(B_i\)为同阶方阵,计算\(AB\)
  • \(A\)\(B\)都为\(n\)阶方阵,则
    \begin{equation*} \begin{pmatrix} 0 & A\\ B & 0 \end{pmatrix} \begin{pmatrix} 0 & A\\ B & 0 \end{pmatrix}= \begin{pmatrix} AB & 0\\ 0 & {\color{red}BA} \end{pmatrix}{\color{red}\ne} \begin{pmatrix} 0 & A^2\\ B^2 & 0 \end{pmatrix}. \end{equation*}
  • \(\begin{pmatrix} 0 & E_3\\ 1 & 0 \end{pmatrix}\begin{pmatrix} 0 & E_3\\ 1 & 0 \end{pmatrix}\)\({\color{red}\ne }\begin{pmatrix} 1\cdot E_3 & 0\\ 0 & E_3\cdot 1 \end{pmatrix} \)
  • \(A = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & -1 & 1\\ 0 & 0 & 1 & -1 \end{pmatrix}\),求\(A^{2022}\)

1.3.3.

\(A_{m\times n} = (A_1,\ A_2,\ \ldots,\ A_n) = \begin{pmatrix} \alpha_1\\ \alpha_2\\ \vdots\\ \alpha_m \end{pmatrix}\)\(X=\begin{pmatrix} x_1\\x_2\\ \vdots\\x_n \end{pmatrix}\)\(\beta=\begin{pmatrix} b_1\\b_2\\\vdots\\b_m \end{pmatrix}\)\(B_{n\times s}=(B_1,\ B_2,\ \ldots,\ B_s)=\begin{pmatrix} \beta_1\\\beta_2\\\vdots\\\beta_n \end{pmatrix} \)。 以分块形式改写\(AX=\beta\)\(AB\)

1.3.4.

\(A\)是3阶方阵,\(\alpha_1\)\(\alpha_2\)\(\alpha_3\)是3维列向量。已知
\begin{equation*} A \alpha_1=-\alpha_1;\ A \alpha_2=\alpha_2;\ A \alpha_3 = \alpha_2+\alpha_3. \end{equation*}
证明\(AP=PB\),其中
\begin{equation*} P=(\alpha_1,\alpha_2,\alpha_3); B=\begin{pmatrix} -1 & 0 & 0\\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}. \end{equation*}
分块矩阵的转置
\begin{equation*} A =\begin{pmatrix} {\color{red}A_{11}} & {\color{red}A_{12}} & {\color{red}\cdots} & {\color{red}A_{1s}}\\ {\color{blue}A_{21}} & {\color{blue}A_{22}} & {\color{blue}\cdots} & {\color{blue}A_{2s}}\\ {\color{orange}\vdots} & {\color{orange}{\vdots}} & {\color{orange}\ddots} & {\color{orange}\vdots}\\ {\color{green}A_{r1}} & {\color{green}A_{r2}} & {\color{green}\cdots} & {\color{green}A_{rs}} \end{pmatrix}\to \begin{pmatrix} {\color{red}A_{11}^T} & {\color{blue}A_{21}^T} & {\color{orange}\cdots} & {\color{green}A_{r1}^T}\\ {\color{red}A_{12}^T} & {\color{blue}A_{22}^T} & {\color{orange}\cdots} & {\color{green}A_{r2}^T}\\ {\color{red}\vdots} & {\color{blue}{\vdots}} & {\color{orange}\ddots} & {\color{green}\vdots}\\ {\color{red}A_{1s}^T} & {\color{blue}A_{2s}^T} & {\color{orange}\cdots} & {\color{green}A_{rs}^T} \end{pmatrix}=A^T \end{equation*}
\((A_{ij})_{r\times s}^T =(A_{{\color{red}ji}}^T)_{{\color{red}s\times r}} \)

练习 1.3.2 练习

1.

\(M_1\)\(m_1\)阶方阵,\(N_1\)\(n_1\)阶方阵,\(A_{ij}\)\(m_i\times m_j\)矩阵,\(B_{kl}\)\(m_k\times n_l\)矩阵,\(K\)\(m_1\times m_2\)矩阵,\(L\)\(n_1\times n_2\)矩阵,计算:
  1. \(\displaystyle \begin{pmatrix} M_1 & 0\\ 0 & E_{m_2} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix},\ \begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}\begin{pmatrix} N_1 & 0\\ 0 & E_{n_2} \end{pmatrix};\)
  2. \(\displaystyle \begin{pmatrix} 0 & E_{m_2}\\ E_{m_1} & 0 \end{pmatrix}\begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix},\ \begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}\begin{pmatrix} 0 & E_{n_1}\\ E_{n_2} & 0 \end{pmatrix};\)
  3. \(\displaystyle \begin{pmatrix} E_{m_1} & K\\ 0 & E_{m_2} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix},\ \begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}\begin{pmatrix} E_{n_1} & L\\ 0 & E_{n_2} \end{pmatrix};\)
  4. \(\begin{pmatrix} A_{11} & A_{12} & A_{13}\\ 0 & A_{22} & A_{23}\\ 0 & 0 & A_{33} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12} & B_{13}\\ 0 & B_{22} & B_{23}\\ 0 & 0 & B_{33} \end{pmatrix}\)
解答.
  1. \begin{equation*} \begin{pmatrix} M_1 & 0\\ 0 & E_{m_2} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}= \begin{pmatrix} MB_{11} & MB_{12}\\ B_{21} & B_{22} \end{pmatrix}, \end{equation*}
    \begin{equation*} \begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}\begin{pmatrix} N_1 & 0\\ 0 & E_{n_2} \end{pmatrix}=\begin{pmatrix} B_{11}N & B_{12}\\ B_{21}N & B_{22} \end{pmatrix}; \end{equation*}
  2. \begin{equation*} \begin{pmatrix} 0 & E_{m_2}\\ E_{m_1} & 0 \end{pmatrix}\begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}=\begin{pmatrix} B_{21} & B_{22}\\ B_{11} & B_{12} \end{pmatrix}, \end{equation*}
    \begin{equation*} \begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}\begin{pmatrix} 0 & E_{n_1}\\ E_{n_2} & 0 \end{pmatrix}=\begin{pmatrix} B_{12} & B_{11}\\ B_{22} & B_{21} \end{pmatrix}; \end{equation*}
  3. \begin{equation*} \begin{pmatrix} E_{m_1} & K\\ 0 & E_{m_2} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}=\begin{pmatrix} B_{11}+KB_{21} & B_{12}+KB_{22}\\ B_{21} & B_{22} \end{pmatrix}, \end{equation*}
    \begin{equation*} \begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}\begin{pmatrix} E_{n_1} & L\\ 0 & E_{n_2} \end{pmatrix}=\begin{pmatrix} B_{11} & B_{11}L+B_{12}\\ B_{21} & B_{21}L+B_{22} \end{pmatrix}; \end{equation*}
  4. \(\begin{pmatrix} A_{11}B_{11} & A_{11}B_{12}+A_{12}B_{22} & A_{11}B_{13}+A_{12}B_{23}+A_{13}B_{33}\\ 0 & A_{22}B_{22} & A_{22}B_{23}+A_{23}B_{33}\\ 0 & 0 & A_{33}B_{33} \end{pmatrix}\)

2.

\(A=\begin{pmatrix} 3&1&0&0\\0&3&0&0\\0&0&3&9\\0&0&1&3 \end{pmatrix}\),求\(A^n\),其中\(n\geq 2\)
解答.
\(A_1=\begin{pmatrix} 3&1\\0&3 \end{pmatrix}\)\(A_2=\begin{pmatrix} 3&9\\1&3 \end{pmatrix}\),则\(A=\begin{pmatrix} A_1&0\\0&A_2 \end{pmatrix}\)。注意到
\begin{equation*} A_1=3E_2+J, \end{equation*}
其中\(J=\begin{pmatrix} 0&1\\0&0 \end{pmatrix}\)。而当\(i\geq 2\)时,\(J^i=0\),所以
\begin{equation*} A_1^n=\sum\limits_{i=0}^n C_n^i\cdot (3E_2)^{n-i}\cdot J^i=(3E_2)^n+n(3E_2)^{n-1}J=\begin{pmatrix} 3^n&n\cdot 3^{n-1}\\0&3^n \end{pmatrix}. \end{equation*}
\(A_2=\begin{pmatrix} 3\\1 \end{pmatrix}\begin{pmatrix} 1&3 \end{pmatrix}\),故
\begin{equation*} A_2^n=[\begin{pmatrix} 3\\1 \end{pmatrix}\begin{pmatrix} 1&3 \end{pmatrix}]^n=\begin{pmatrix} 3\\1 \end{pmatrix}[\begin{pmatrix} 1&3 \end{pmatrix}\begin{pmatrix} 3\\1 \end{pmatrix}]^{n-1}\begin{pmatrix} 1&3 \end{pmatrix}=6^{n-1} \begin{pmatrix} 3&9\\1&3 \end{pmatrix}. \end{equation*}
因此
\begin{equation*} A^n=\begin{pmatrix} A_1&0\\0&A_2 \end{pmatrix}^n=\begin{pmatrix} A_1^n&0\\0&A_2^n \end{pmatrix}=\begin{pmatrix} 3^n&n\cdot 3^{n-1}&0&0\\0&3^n&0&0\\0&0&3\cdot 6^{n-1}&9\cdot 6^{n-1}\\0&0&6^{n-1}&3\cdot 6^{n-1} \end{pmatrix}. \end{equation*}

3.

\(\varepsilon_i\)\(n\)维标准单位列向量,\(E_{ij}\)\(n\)阶基础矩阵。证明:
  1. \(\varepsilon_i^T\varepsilon_j= \delta_{ij}\),其中\(\delta_{ij}\)是Kronecker符号,即\(\delta_{ij}=\left\{\begin{array}{cl} 1,&i=j,\\0,&i\neq j; \end{array}\right.\)
  2. \(\varepsilon_i\varepsilon_j^T= E_{ij}\)
  3. \(\displaystyle E_{ij}E_{kl}=\left\{\begin{array}{cc} E_{il},&j=k,\\0,&j\neq k; \end{array}\right.\)
  4. \(A=(a_{ij})\)\(n\)阶方阵,则\(E_{ij}A\)\(A\)的第\(i\)行变为第\(j\)行元,其他元变为\(0\)
  5. \(A=(a_{ij})\)\(n\)阶方阵,则\(AE_{ij}\)\(A\)的第\(j\)列变为第\(i\)列元,其他元变为\(0\)
  6. \(A=(a_{ij})\)\(n\)阶方阵,则\(E_{ij}AE_{kl}=a_{jk}E_{il}\)
解答.
  1. 方法一:直接计算得。
    方法二:分别将单位矩阵\(E_n\)按行和列分块,得
    \begin{equation*} E_n=\begin{pmatrix} \varepsilon_1^T\\\vdots\\\varepsilon_n^T \end{pmatrix},\ E_n=\begin{pmatrix} \varepsilon_1&\varepsilon_2&\cdots&\varepsilon_n \end{pmatrix}. \end{equation*}
    由于\(E_n=E_n^2=\begin{pmatrix} \varepsilon_1^T\\\vdots\\\varepsilon_n^T \end{pmatrix}\begin{pmatrix} \varepsilon_1&\varepsilon_2&\cdots&\varepsilon_n \end{pmatrix}=(\varepsilon_i^T\varepsilon_j)_{n\times n}\),比较两边矩阵的第\((i,j)\)元素,得\(\varepsilon_i^T\varepsilon_j= \delta_{ij}\)
  2. \begin{equation*} \begin{array}{ccccccccc} &&\mbox{第j列}&&&&\mbox{第j列}&&\\\varepsilon_i\varepsilon_j^T=\varepsilon_i (0&\cdots&1&\cdots&0)=(0&\cdots&\varepsilon_i&\cdots&0)=E_{ij}. \end{array} \end{equation*}
  3. \((2)\)
    \begin{equation*} E_{ij}=\varepsilon_i\varepsilon_j^T,\ E_{kl}=\varepsilon_k\varepsilon_l^T, \end{equation*}
    \begin{equation*} E_{ij}E_{kl}=(\varepsilon_i\varepsilon_j^T)(\varepsilon_k\varepsilon_l^T)=\varepsilon_i(\varepsilon_j^T\varepsilon_k)\varepsilon_l^T. \end{equation*}
    \(\varepsilon_j^T\varepsilon_k= \delta_{jk}\),因此\(E_{ij}E_{kl}=\delta_{jk}\varepsilon_i\varepsilon_l^T=\delta_{jk}E_{il}=\left\{\begin{array}{cc} E_{il},&j=k,\\0,&j\neq k. \end{array}\right.\)
  4. \(E_{ij}\)按行分块,得\(E_{ij}=\begin{pmatrix} 0\\ \vdots\\ \varepsilon_j^T\\ \vdots\\ 0 \end{pmatrix}\ \mbox{(第i行)}\),则\(E_{ij}A=\begin{pmatrix} 0\\ \vdots\\ \varepsilon_j^TA\\ \vdots\\ 0 \end{pmatrix}\)(第\(i\)行)。而\(\varepsilon_j^TA\)表示\(A\)的第\(j\)行,因此\(E_{ij}A\)\(A\)的第\(i\)行变为第\(j\)行元,其他元变为\(0\)
  5. \(E_{ij}\)按列分块,得
    \begin{equation*} \begin{array}{ccccc} &&\mbox{第j列}&&\\ E_{ij}=(0&\cdots&\varepsilon_i&\cdots&0), \end{array} \end{equation*}
    \begin{equation*} \begin{array}{ccccc} &&\mbox{第j列}&&\\ AE_{ij}=(0&\cdots&A\varepsilon_i&\cdots&0). \end{array} \end{equation*}
    \(A\varepsilon_i\)表示\(A\)的第\(i\)列,因此\(AE_{ij}\)\(A\)的第\(j\)列变为第\(i\)列元,其他元变为\(0\)
  6. \(A\)按列分块得\(A=\begin{pmatrix} A_1&A_2&\cdots&A_n \end{pmatrix}\),由\((5)\)
    \begin{equation*} \begin{array}{ccccc} &&\mbox{第l列}&&\\ AE_{kl}=(0&\cdots&A_k&\cdots&0), \end{array} \end{equation*}
    再由\((4)\)\(E_{ij}AE_{kl}\)\(AE_{kl}\)的第\(i\)行变为第\(j\)行元,其他元变为\(0\)。因此
    \begin{equation*} E_{ij}AE_{kl}=a_{jk}E_{il}. \end{equation*}

4.

计算\(\begin{pmatrix} 0&E_4\\1&0 \end{pmatrix}^n\),其中\(n=2,3,4,5\)
解答.
因为\(A=\begin{pmatrix} \varepsilon_5& \varepsilon_1&\varepsilon_2&\varepsilon_3&\varepsilon_4 \end{pmatrix}\),所以
\begin{equation*} \begin{array}{ccl}A^2&=&A\begin{pmatrix} \varepsilon_5& \varepsilon_1&\varepsilon_2&\varepsilon_3&\varepsilon_4 \end{pmatrix}=\begin{pmatrix} A\varepsilon_5& A\varepsilon_1&A\varepsilon_2&A\varepsilon_3&A\varepsilon_4 \end{pmatrix}\\&=&\begin{pmatrix} \varepsilon_4&\varepsilon_5& \varepsilon_1&\varepsilon_2&\varepsilon_3 \end{pmatrix}=\begin{pmatrix} 0&E_3\\E_2&0 \end{pmatrix},\end{array} \end{equation*}
\begin{equation*} A^3=AA^2=\begin{pmatrix} A\varepsilon_4&A\varepsilon_5& A\varepsilon_1&A\varepsilon_2&A\varepsilon_3 \end{pmatrix}=\begin{pmatrix} \varepsilon_3&\varepsilon_4&\varepsilon_5& \varepsilon_1&\varepsilon_2 \end{pmatrix}=\begin{pmatrix} 0&E_2\\E_3&0 \end{pmatrix}, \end{equation*}
\begin{equation*} A^4=AA^3=\begin{pmatrix} A\varepsilon_3&A\varepsilon_4&A\varepsilon_5& A\varepsilon_1&A\varepsilon_2 \end{pmatrix}=\begin{pmatrix} \varepsilon_2&\varepsilon_3&\varepsilon_4&\varepsilon_5& \varepsilon_1 \end{pmatrix}=\begin{pmatrix} 0&1\\E_4&0 \end{pmatrix}, \end{equation*}
\begin{equation*} A^5=AA^4=\begin{pmatrix} A\varepsilon_2&A\varepsilon_3&A\varepsilon_4&A\varepsilon_5& A\varepsilon_1 \end{pmatrix}=\begin{pmatrix} \varepsilon_1&\varepsilon_2&\varepsilon_3&\varepsilon_4&\varepsilon_5 \end{pmatrix}=E_5. \end{equation*}

5.

\begin{equation*} A=\begin{pmatrix} 0&1&0&\cdots&0&0\\0&0&1&\cdots&0&0\\\cdots&\cdots&\cdots&\cdots&\cdots&\cdots\\0&0&0&\cdots&0&1\\1&0&0&\cdots&0&0 \end{pmatrix} \end{equation*}
\(n\)阶方阵,证明:对任意\(1\leq k\leq n\),有
\begin{equation*} A^k=\begin{pmatrix} 0&E_{n-k}\\E_k&0 \end{pmatrix}. \end{equation*}
解答.
  1. \(k=1\)时,\(A=\begin{pmatrix} 0&E_{n-1}\\E_1&0 \end{pmatrix}\),结论成立。
  2. 假设\(A^{k-1}=\begin{pmatrix} 0&E_{n-(k-1)}\\E_{k-1}&0 \end{pmatrix}\),即
    \begin{equation*} A^{k-1}=\left( \varepsilon_{n-k+2},\varepsilon_{n-k+3},\cdots,\varepsilon_n,\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_{n-k+1} \right), \end{equation*}
    \(A=(\varepsilon_n, \varepsilon_1,\varepsilon_2,\cdots,\varepsilon_{n-1}),\)
    \begin{equation*} \begin{array}{ccl} A^k&=&A^{k-1}\left( \varepsilon_n, \varepsilon_1,\varepsilon_2,\cdots,\varepsilon_{n-1} \right)\\&=&\left( A^{k-1}\varepsilon_n, A^{k-1}\varepsilon_1,A^{k-1}\varepsilon_2,\cdots,A^{k-1}\varepsilon_{n-1} \right)\\ &=&\left( \varepsilon_{n-k+1},\varepsilon_{n-k+2},\cdots,\varepsilon_n,\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_{n-k} \right)\\&=&\begin{pmatrix} 0&E_{n-k}\\E_k&0 \end{pmatrix}. \end{array} \end{equation*}

6.

\begin{equation*} A=\left(\begin{array}{cccc} a_1E_{n_1}&&&\\ &a_2E_{n_2}&&\\ &&\ddots&\\ &&&a_rE_{n_r} \end{array}\right), \end{equation*}
其中\(a_i\neq a_j\)(当\(i\neq j\)时),\(E_{n_i}\)\(n_i\)阶单位矩阵。证明:与\(A\)可交换的矩阵只能是分块对角矩阵
\begin{equation*} {\rm diag} (B_1, B_2, \cdots,B_r), \end{equation*}
其中\(B_i\)\(n_i\)阶方阵,\(i=1,2,\cdots,r\)
解答.
\(B=(B_{ij})\)与矩阵\(A\)可交换,其中\(B_{ij}\)\(n_i\times n_j\)矩阵。由
\begin{equation*} AB=\begin{pmatrix} a_1E_{n_1}B_{11}&a_1E_{n_1}B_{12}&\cdots&a_1E_{n_1}B_{1r}\\ a_2E_{n_2}B_{21}&a_2E_{n_2}B_{22}&\cdots&a_2E_{n_2}B_{2r}\\ \cdots&\cdots&\cdots&\cdots\\ a_rE_{n_r}B_{r1}&a_rE_{n_r}B_{r2}&\cdots&a_rE_{n_r}B_{rr} \end{pmatrix}=\begin{pmatrix} a_1B_{11}&a_1B_{12}&\cdots&a_1B_{1r}\\ a_2B_{21}&a_2B_{22}&\cdots&a_2B_{2r}\\ \cdots&\cdots&\cdots&\cdots\\ a_rB_{r1}&a_rB_{r2}&\cdots&a_rB_{rr} \end{pmatrix}, \end{equation*}
\begin{equation*} BA=\begin{pmatrix} B_{11}a_1E_{n_1}&B_{12}a_2E_{n_2}&\cdots&B_{1r}a_rE_{n_r}\\ B_{21}a_1E_{n_1}&B_{22}a_2E_{n_2}&\cdots&B_{2r}a_rE_{n_r}\\ \cdots&\cdots&\cdots&\cdots\\ B_{r1}a_1E_{n_1}&B_{r2}a_2E_{n_2}&\cdots&B_{rr}a_rE_{n_r} \end{pmatrix}=\begin{pmatrix} a_1B_{11}&a_2B_{12}&\cdots&a_rB_{1r}\\ a_1B_{21}&a_2B_{22}&\cdots&a_rB_{2r}\\ \cdots&\cdots&\cdots&\cdots\\ a_1B_{r1}&a_2B_{r2}&\cdots&a_rB_{rr} \end{pmatrix}, \end{equation*}
可知:\(a_iB_{ij}=a_jB_{ij},\ \forall 1\leq i,j\leq n\),即
\begin{equation*} (a_i-a_j)B_{ij}=0,\ \forall 1\leq i,j\leq n \end{equation*}
而当\(i\neq j\)时,\(a_i\neq a_j\),故\(B_{ij}=0(i\neq j)\)。因此\(B={\rm diag} (B_{11}, B_{22}, \cdots,B_{rr})\)为分块对角矩阵。

7.

\(A=\begin{pmatrix} 3&0&0&0&0\\ 0&3&0&0&0\\ 0&0&3&0&0\\ 0&0&0&2&0\\ 0&0&0&0&2 \end{pmatrix}\),求所有与\(A\)可交换的矩阵。
解答.
因为
\begin{equation*} A=\begin{pmatrix} 3E_3&0\\0&2E_2 \end{pmatrix}, \end{equation*}
所以由上题结论知与\(A\)可交换的矩阵只能是分块对角矩阵\(\begin{pmatrix} B_1&0\\0&B_2 \end{pmatrix}\),其中\(B_1\)\(3\)阶方阵,\(B_2\)\(2\)阶方阵。显然对任意\(3\)阶方阵\(B_1\)\(2\)阶方阵\(B_2\),分块对角矩阵\(\begin{pmatrix} B_1&0\\0&B_2 \end{pmatrix}\)\(A=\begin{pmatrix} 3E_3&0\\0&2E_2 \end{pmatrix}\)都可交换。
因此所有与\(A\)可交换的矩阵为
\begin{equation*} \begin{pmatrix} b_{11}&b_{12}&b_{13}&0&0\\ b_{21}&b_{22}&b_{23}&0&0\\ b_{31}&b_{32}&b_{33}&0&0\\ 0&0&0&c_{11}&c_{12}\\ 0&0&0&c_{21}&c_{22} \end{pmatrix}, \end{equation*}
其中\(b_{ij},c_{kl}\in\mathbb{F},\ \forall 1\leq i,j\leq 3,\ 1\leq k,l\leq 2\)