主要内容

高等代数教学辅导

4.6 不变子空间

建设中!

子节 4.6.1

定义 4.6.1.

\(U\)\(V\)的子空间,\(\phi\in \mathcal{L}(V)\),且满足\(\phi(U)\subseteq U\),则称\(U\)\(\phi\)-不变子空间\(\phi\)-子空间 。 将\(\phi\)限制在\(U\)上,导出\(U\)的线性变换,称为由\(\phi\)导出变换 (或称为\(\phi\)\(U\)限制变换), 记为\({\color{red}\phi|_U}\)
  • \(\phi\)\(\phi|_U\)的相同点是在\(U\)上对应法则一样;不同点是\(\phi\)\(V\)的线性变换;而\(\phi|_U\)\(U\)的线性变换。
  • 定义中\(U\)\(\phi\)的不变子空间这个条件不可少,否则无法导出\(U\)上的线性变换。
\(\phi\in\mathcal{L}(V)\)\(U\)\(\phi\)的不变子空间。设\(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_r\)\(U\)的一个基,将其扩为\(V\) 的一个基\(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_r,\varepsilon_{r+1},\ldots,\varepsilon_n\),则\(\phi\)在此基下的矩阵是
\begin{equation} \begin{pmatrix} a_{1,1} & \cdots & a_{1,r} & a_{1,r+1} & \cdots & a_{1,n}\\ \vdots &\ddots & \vdots & \vdots & \ddots & \vdots\\ a_{r,1} & \cdots & a_{r,r} & a_{r,r+1} & \cdots & a_{r,n}\\ 0 & \cdots & 0 & a_{r+1,r+1} & \cdots & a_{r+1,n}\\ \vdots &\ddots & \vdots & \vdots & \ddots & \vdots\\ 0 & \cdots & 0 & a_{n,r+1} & \cdots & a_{n,n}\\ \end{pmatrix}.\tag{4.1} \end{equation}
反之,若\(\phi\)在基\(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_r,\varepsilon_{r+1},\ldots,\varepsilon_n\)下的矩阵为(4.1),则\(\langle \varepsilon_1,\varepsilon_2,\ldots,\varepsilon_r\rangle\)是一个\(\phi\)-子空间。
\(\phi\)\(n\)维线性空间\(V\)的线性变换,\(V=V_1\oplus V_2\)\(V_1\)\(V_2\)\(\phi\)-子空间,\(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_r\)\(V_1\)的基,\(\varepsilon_{r+1},\varepsilon_{r+2},\ldots,\varepsilon_n\)\(V_2\)的基,则在基\(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_r,\varepsilon_{r+1},\ldots,\varepsilon_n\)下的矩阵是
\begin{equation} \begin{pmatrix} A_1 & 0\\ 0 & A_2 \end{pmatrix}\tag{4.2} \end{equation}
其中\(A_1\)\(r\)阶方阵,\(A_2\)\(n-r\)阶方阵。
反之,若\(\phi\)在基\(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_r,\varepsilon_{r+1},\ldots,\varepsilon_n\)下的矩阵是(4.2),令
\begin{equation*} V_1=\langle \varepsilon_1,\varepsilon_2,\ldots,\varepsilon_r\rangle,\ \ V_2=\langle \varepsilon_{r+1},\varepsilon_{r+2},\ldots,\varepsilon_n\rangle , \end{equation*}
\(V_1\)\(V_2\)都是\(\phi\)-子空间,且
\begin{equation*} V = V_1\oplus V_2. \end{equation*}

练习 4.6.2 练习

1.

\(\varphi\)是数域\(\mathbb{F}\)\(n\)维线性空间\(V\)上的线性变换,取定\(\lambda\in\mathbb{F}\),记
\begin{equation*} V_ \lambda=\{\alpha\in V\ |\ \varphi (\alpha)=\lambda \alpha\}, \end{equation*}
证明:\(V_ \lambda\)\(\varphi\)-不变子空间。

2.

\(V\)是4维线性空间,\(V\)上线性变换\(\varphi\)在基\(\xi_1,\xi_2,\xi_3,\xi_4\)下的矩阵为
\begin{equation*} \begin{pmatrix} 1&0&2&-1\\ 0&1&4&-2\\ 2&-1&0&1\\ 2&-1&-1&2 \end{pmatrix}, \end{equation*}
  1. 证明:\(U=\langle \xi_1+2 \xi_2, \xi_2+\xi_3+2 \xi_4\rangle\)\(\varphi\)-不变子空间;
  2. \(\varphi|_U\)在基\(\xi_1+2 \xi_2, \xi_2+\xi_3+2 \xi_4\)下的矩阵。

3.

\(\varphi ,\psi\)\(n\)维线性空间\(V\)上线性变换,
  1. \(\varphi\psi=\psi\varphi\),证明:\({\rm Ker}\varphi\)\({\rm Im}\varphi\)都是\(\psi\)-不变子空间;
  2. \(\varphi^2=\varphi\),证明:\({\rm Ker}\varphi\)\({\rm Im}\varphi\)都是\(\psi\)-不变子空间的充分必要条件是\(\varphi\psi=\psi\varphi\)

4.

\(\varphi:\mathbb{F}^2\rightarrow\mathbb{F}^2,\ (a,b)^T\mapsto (b,a)^T\),试求所有非平凡的\(\varphi\)-不变子空间。

5.

\(\varphi\)\(n\)维线性空间\(V\)上的线性变换,\(\varphi\)在基\(\xi_1,\xi_2,\cdots ,\xi_n\)下的矩阵是
\begin{equation*} \begin{pmatrix} a&0&0&\cdots&0&0\\ 1&a&0&\cdots&0&0\\ 0&1&a&\cdots&0&0\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ 0&0&0&\cdots&a&0\\ 0&0&0&\cdots&1&a \end{pmatrix}, \end{equation*}
证明:
  1. \(U\)\(\varphi\)-子空间,且\(\xi_1\in U\),则\(U=V\)
  2. 对于任意非零\(\varphi\)-子空间\(U\),总有\(\xi_n\in U\)
  3. \(V\)不能分解为两个非平凡的\(\varphi\)-子空间的直和;
  4. \(\varphi\)的所有不变子空间。