设\(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n\)和\(\tilde{\varepsilon}_1,\tilde{\varepsilon}_2,\ldots,\tilde{\varepsilon}_n\)是\(V\)的两组基,且
\begin{equation*}
(\tilde{\varepsilon}_1,\tilde{\varepsilon}_2,\ldots,\tilde{\varepsilon}_n)= (\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n)P.
\end{equation*}
又设 \(\eta_1,\eta_2,\ldots,\eta_m\)和\(\tilde{\eta}_1,\tilde{\eta}_2,\ldots,\tilde{\eta}_m\)是\(U\)的两组基,且
\begin{equation*}
(\tilde{\eta}_1,\tilde{\eta}_2,\ldots,\tilde{\eta}_m)= (\eta_1,\eta_2,\ldots,\eta_m)Q.
\end{equation*}
设\(\phi\in \mathcal{L}(V,U)\),
\begin{equation*}
\begin{array}{c}
\phi(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n)=(\eta_1,\eta_2,\ldots,\eta_m)A_{m\times n},
\\
\phi(\tilde{\varepsilon}_1,\tilde{\varepsilon}_2,\ldots,\tilde{\varepsilon}_n)=(\tilde{\eta}_1,\tilde{\eta}_2,\ldots,\tilde{\eta}_m)B_{m\times n}.
\end{array}
\end{equation*}
则\(B=Q^{-1}AP\),即\(A\)、\(B\)相抵。