主要内容

高等代数教学辅导

4.1 映射

建设中!

子节 4.1.1 知识点

定义 4.1.1.

\(S\)\(T\)是非空集合, 用 \(\phi\)表示一个\(S\)\(T\)的 对应法则。若对\(\forall s\in S\),有且只有\(T\)中 唯一元素\(t\)与之对应,则称 \(\phi\)\(S\)\(T\)映射 ,记为 \(\phi: S\to T\)。用 \(t= \phi(s)\)\(\phi: s\mapsto t\),表示在映射\(\phi\)\(t\)\(s\)相对应。称\(t\)\(s\)\(\phi\)下的\(s\)称为\(t\)原像 。当取遍\(S\)中所有\(s\)时,所有像的集合记为
\begin{equation*} {\rm Im}(\phi)=\phi(S)=\{\phi(s)| s\in S\}. \end{equation*}
元素\(t\)的所有原像的集合记为
\begin{equation*} \phi^{-1}(t)=\{s\in S|\phi(s)= t\}. \end{equation*}

定义 4.1.2.

\(\phi: S\to T\)。若\(\forall s_1\)\(s_2\in S\)\(s_1\ne s_2\)必有\(\phi(s_1)\ne \phi(s_2)\),则称\(\phi\)单射
  • 等价说法:若\(\phi\)是单射,则\(\phi(s_1)=\phi(s_2)\)等价于\(s_1=s_2\)

定义 4.1.3.

若对\(\forall t\in T\),存在\(s\in S\),使得\(\phi(s)=t\),则称\(\phi\)满射
  • 等价说法:\(\phi(S)=T\)

定义 4.1.4.

既单又满的映射称为双射 ,也称一一映射
  • 等价说法:\(\forall t\in T\),存在唯一\(s\in S\),使得\(\phi(s)=t\)
  • 对于有限集来说,两集合之间存在双射的充要条件是它们所含元素的个数相同;
  • 对于有限集\(S\)\(T\subsetneq S\),(即\(T\)\(S\) 的真子集),则 \(S\)\(T\) 之间不可能存在双射;但是对于无限集未必如此。

定义 4.1.5.

\(\phi: S\to T\)\(\psi: U\to V\)。若\(S=U\)\(T=V\),且\(\forall s\in S\)\(\phi(s) =\psi(s)\),则称\(\phi=\psi\)

定义 4.1.6.

\(\phi: S\to T\)\(\psi: T\to U\)\(\phi\)\(\psi\)的合成 定义为
\begin{equation*} {\color{blue}\psi\phi: S\to U, s\mapsto \psi(\phi(s))}. \end{equation*}
  • 一般的,\(\psi\phi{\color{red}\ne} \phi \psi\)
  • \(\phi: S\to {\color{blue}T}\)\(\psi: {\color{blue}T}\to {\color{orange}U}\)\(\rho: {\color{orange}U}\to V\),则
    \begin{equation*} \rho(\psi\phi)= (\rho\psi)\phi. \end{equation*}

定义 4.1.7.

映射\({\rm id}_S: S\to S, s\mapsto s\)称为集合\(S\)上的恒等映射单位映射
  • \(\phi: S\to T\),则\({\rm id}_T\phi=\phi{\rm id}_S\)

定义 4.1.8.

\(\phi: S\to T\)是映射,若存在映射\(\psi: T\to S\),使得\(\psi\phi={\rm id}_S \),且\(\phi\psi={\rm id}_T\),则称\(\phi\)可逆映射 ,并称\(\psi\)\(\phi\)逆映射
  • 可逆映射的逆映射唯一, 记为\(\phi^{-1}\)
  • \(\phi: S\to T\)\(\psi: T\to U\)均为可逆映射, 则\(\psi\phi\)可逆,且\((\psi\phi)^{-1}=\phi^{-1}\psi^{-1}\)

练习 4.1.2 练习

1.

指出下列法则是否为映射?单射?满射?双射?并给出理由。
  1. \(\varphi:\mathbb{R}\rightarrow\mathbb{R},\ x\mapsto\left\{\begin{matrix} x,& x>0\\-x,& x < 0 \end{matrix}\right. \text{;}\)
  2. \(\varphi:\mathbb{R}\rightarrow\mathbb{R},\ x\mapsto\left\{\begin{matrix} 1,& x\geq 0\\-1,& x\leq 0 \end{matrix}\right.\text{;}\)
  3. \(\varphi:\mathbb{R}\rightarrow\mathbb{Q},\ x\mapsto \sin x \text{;}\)
  4. \(\varphi:\mathbb{R}\rightarrow\mathbb{R},\ x\mapsto \log_2 x \text{;}\)
  5. \(\varphi:\mathbb{R}\rightarrow\mathbb{R}^+,\ x\mapsto 2^x \text{;}\)
  6. \(\varphi:\mathbb{R}\rightarrow\mathbb{R}^2,\ x\mapsto (0,x)^T \text{;}\)
  7. \(\varphi:\mathbb{R}^2\rightarrow\mathbb{R},\ (x,y)^T\mapsto x \text{;}\)
  8. \(\varphi:\mathbb{R}^2\rightarrow\mathbb{R}^2,\ (x,y)\mapsto (2y,x) \text{;}\)
  9. \(\varphi:\mathbb{F}^3\rightarrow \mathbb{F}^3,\ (a,b,c)^T\mapsto (a-b,b-2c,c+3a)^T \text{;}\)
  10. \(\varphi:\mathbb{F}^3\rightarrow \mathbb{F}^3,\ (a,b,c)^T\mapsto (a^2,b^2,c^2)^T \)

2.

\(a,b\)是任意两个实数且\(a < b\),试找出一个\([0,1]\)\([a,b]\)的双射。

3.

找一个全体实数集到全体正实数集的双射。

4.

已知映射\(\varphi:\mathbb{R}\rightarrow\mathbb{R}^+,\ x\mapsto 3^x\)\(\psi:\mathbb{R}^+\rightarrow (0,1),\ x\mapsto\frac{x}{x+1}\)
  1. 试求\(\psi\varphi\)
  2. 判断\(\psi\varphi\)是否是双射,并说明理由。若\(\psi\varphi\)是双射,求\((\psi\varphi)^{-1}\)

5.

证明:
  1. 设映射\(\varphi:S\rightarrow T\)是单射,\(\psi:T\rightarrow U\)是单射,则\(\psi\varphi:S\rightarrow U\)是单射;
  2. 设映射\(\varphi:S\rightarrow T\)是满射,\(\psi:T\rightarrow U\)是满射,则\(\psi\varphi:S\rightarrow U\)是满射;
  3. 设映射\(\varphi:S\rightarrow T\)是双射,\(\psi:T\rightarrow U\)是双射,则\(\psi\varphi:S\rightarrow U\)是双射,且\((\psi\varphi)^{-1}=\varphi^{-1}\psi^{-1}\)

6.

已知映射\(\varphi:\mathbb{R}\rightarrow\mathbb{R}^+,\ x\mapsto 3^x\)\(\psi:\mathbb{R}^+\rightarrow (0,1),\ x\mapsto \frac{x}{x+1}\)
  1. 试求\(\psi\varphi\)
  2. 判断\(\psi\varphi\)是否是双射,并说明理由。若\(\psi\varphi\)是双射,求\((\psi\varphi)^{-1}\)

7.

\(\varphi:S\rightarrow T,\psi:T\rightarrow S\)是映射,举例说明可能\(\varphi\psi={\rm id}_T\)\(\psi\varphi\neq {\rm id}_S\)

8.

  1. \(\varphi:S\rightarrow T\)是单射,\(\psi,\sigma:M\rightarrow S\),证明:若\(\varphi\psi=\varphi\sigma\),则\(\psi=\sigma\)
  2. \(\rho:S\rightarrow T\)是满射,\(\tau,\chi:T\rightarrow N\),证明:若\(\tau\rho=\chi\rho\),则\(\tau=\chi\)