必要性:因为\(\varphi\)是正交变换且\(\varphi(\alpha_i)=\beta_i\),所以
\begin{equation*}
\left(\alpha_i,\alpha_j\right)=\left(\varphi(\beta_i),\varphi(\beta_j)\right)=\left(\beta_i,\beta_j\right),\ i,j=1,2,\cdots ,m.
\end{equation*}
充分性:设\(\alpha_1,\cdots ,\alpha_r\)是\(\alpha_1,\alpha_2,\cdots ,\alpha_m\)的一个极大无关组,则
\begin{equation*}
\det G(\alpha_1,\cdots ,\alpha_r)\neq 0.
\end{equation*}
由\(\left(\alpha_i,\alpha_j\right)=\left(\beta_i,\beta_j\right)\)知
\begin{equation*}
\det G(\beta_1,\cdots ,\beta_r)=\det G(\alpha_1,\cdots ,\alpha_r)\neq 0,
\end{equation*}
故\(\beta_1,\cdots ,\beta_r\)线性无关。
由\(\alpha_1,\cdots ,\alpha_r\)是\(\alpha_1,\alpha_2,\cdots ,\alpha_m\)的一个极大无关组知,\(\forall 1\leq i\leq m\),存在\(a_{1i},\cdots ,a_{ri}\in\mathbb{R}\),使得\(\alpha_i=a_{1i}\alpha_1+\cdots +a_{ri}\alpha_r\),则
\begin{equation*}
\left(\beta_i-\sum\limits_{j=1}^ra_{ji}\beta_j,\beta_i-\sum\limits_{j=1}^ra_{ji}\beta_j\right)=\left(\alpha_i-\sum\limits_{j=1}^ra_{ji}\alpha_j,\alpha_i-\sum\limits_{j=1}^ra_{ji}\alpha_j\right)=0,
\end{equation*}
即\(\beta_i=a_{1i}\beta_1+\cdots +a_{ri}\beta_r\),故\(\beta_1,\cdots,\beta_r\)是向量组\(\beta_1,\beta_2,\cdots ,\beta_m\)的一个极大无关组。令\(U_1=\langle \alpha_1,\cdots ,\alpha_m\rangle ,\ U_2=\langle \beta_1,\cdots ,\beta_m\rangle\),则\(\dim U_1=\dim U_2=r\)。
定义\(U_1\)到\(U_2\)的线性映射\(\varphi_1\),满足\(\varphi_1(\alpha_i)=\beta_i,\ i=1,2,\cdots ,r\),则\(\varphi_1\)是线性同构。由\(\left(\alpha_i,\alpha_j\right)=\left(\beta_i,\beta_j\right)\)知:\(\forall \alpha=\sum\limits_{k=1}^r a_k \alpha_k ,\beta=\sum\limits_{l=1}^r b_l \alpha_l\in U_1\),有
\begin{equation*}
\begin{array}{ccl}
(\varphi_1(\alpha),\varphi_1(\beta))&=&\left(\sum\limits_{k=1}^r a_k \varphi_1(\alpha_k),\sum\limits_{l=1}^r b_l \varphi_1(\alpha_l)\right)=\sum\limits_{k=1}^r\sum\limits_{l=1}^r a_kb_l\left(\varphi_1(\alpha_k),\varphi_1(\alpha_l)\right)\\
&=&\sum\limits_{k=1}^r\sum\limits_{l=1}^r a_kb_l\left(\beta_k,\beta_l\right)=\sum\limits_{k=1}^r\sum\limits_{l=1}^r a_kb_l\left(\alpha_k,\alpha_l\right)\\
&=&\left(\sum\limits_{k=1}^r a_k \alpha_k,\sum\limits_{l=1}^r b_l \alpha_l\right)=(\alpha,\beta)
\end{array}
\end{equation*}
故\(\varphi_1\)是欧氏空间\(U_1\)到\(U_2\)的同构映射。
又因为\(\dim U_1^\bot=\dim U_2^\bot=n-r\),所以存在欧氏空间同构映射
\begin{equation*}
\varphi_2:U_1^\bot\rightarrow U_2^\bot
\end{equation*}
注意到\(V=U_1\oplus U_1^\bot\),所以可定义\(V\)上的变换\(\varphi\)如下
\begin{equation*}
\varphi(\alpha+\beta)=\varphi_1(\alpha)+\varphi_2(\beta),\ \forall \alpha\in U_1,\ \beta\in U_1^\bot .
\end{equation*}
不难验证,\(\varphi\)是\(V\)上的线性变换,下证\(\varphi\)保内积。对任意\(X,Y\in V\),存在唯一的\(X_1,Y_1\in U_1, X_2,Y_2\in U_1^\bot\),使得\(X=X_1+X_2,\ Y=Y_1+Y_2\),则
\begin{equation*}
\begin{array}{ccl}
\left(\varphi(X),\varphi(Y)\right)&=&\left(\varphi_1(X_1)+\varphi_2(X_2),\varphi_1(Y_1)+\varphi_2(Y_2)\right)\\
&=&\left(\varphi_1(X_1),\varphi_1(Y_1)\right)+\left(\varphi_1(X_1),\varphi_2(Y_2)\right)+\left(\varphi_2(X_2),\varphi_1(Y_1)\right)\\
&&+\left(\varphi_2(X_2),\varphi_2(Y_2)\right)\\
&=&\left(\varphi_1(X_1),\varphi_1(Y_1)\right)+\left(\varphi_2(X_2),\varphi_2(Y_2)\right)\\
&=&(X_1,Y_1)+(X_2,Y_2)\\
&=&(X_1,Y_1)+(X_1,Y_2)+(X_2,Y_1)+(X_2,Y_2)\\
&=&(X,Y),
\end{array}
\end{equation*}
即\(\varphi\)保内积,进而\(\varphi\)是正交变换,且
\begin{equation*}
\varphi(\alpha_i)=\varphi_1(\alpha_i)=\varphi_1(a_{1i}\alpha_1+\cdots +a_{ri}\alpha_r)=a_{1i}\beta_1+\cdots +a_{ri}\beta_r=\beta_i,\ i=1,2,\cdots ,m\mbox{。}
\end{equation*}