不妨设\(A\)可经过行初等变换化为简化阶梯形矩阵
\begin{equation*}
\left( {\begin{array}{*{20}{r}}
1&0& \cdots &0&{{c_{11}}}&{{c_{12}}}& \cdots &{{c_{1,n - r}}}\\
0&1& \cdots &0&{{c_{21}}}&{{c_{22}}}& \cdots &{{c_{2,n - r}}}\\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0&0& \cdots &1&{{c_{r1}}}&{{c_{r2}}}& \cdots &{{c_{r,n - r}}}\\
0&0& \cdots &0&0&0& \cdots &0\\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0&0& \cdots &0&0&0& \cdots &0
\end{array}} \right)
\end{equation*}
对应的同解方程组为
\begin{equation*}
\left\{\begin{array}{ccccc}
x_1&&&&=-c_{11}x_{r+1}-c_{12}x_{r+2}-\cdots -c_{1,n-r}x_n\\
&x_2&&&=-c_{21}x_{r+1}-c_{22}x_{r+2}-\cdots -c_{2,n-r}x_n\\
\cdots&\cdots&\ddots&\cdots&\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\\
&&&x_r&=-c_{r1}x_{r+1}-c_{r2}x_{r+2}-\cdots -c_{r,n-r}x_n
\end{array}\right.
\end{equation*}
用\(n-r\)组数 \((1,0,\cdots,0)^T,(0,1,\cdots,0)^T,\cdots,(0,0,\cdots,1)^T\) 代入自由未知量 \(({{x_{r + 1}}},{{x_{r + 2}}}, \cdots ,{{x_n}})^T\),得到\(n-r\)个解向量
\begin{equation*}
\begin{array}{c}{\eta _1} = \left( {\begin{array}{*{20}{c}}
{ - {c_{11}}},&{ - {c_{21}}},& \cdots ,&{ - {c_{r1}}},&1,&0,& \cdots ,&0
\end{array}} \right)^T,\pause\\{\eta _2} = \left( {\begin{array}{*{20}{c}}
{ - {c_{12}}},&{ - {c_{22}}},& \cdots ,&{ - {c_{r2}}},&0,&1,& \cdots ,&0
\end{array}} \right)^T, \pause\\\vdots \\{\eta _{n - r}} = \left( {\begin{array}{*{20}{c}}
{ - {c_{1,n - r}}},&{ - {c_{2,n - r}}},& \cdots ,&{ - {c_{r,n - r}}},&0,&0,& \cdots ,&1
\end{array}} \right)^T.\end{array}
\end{equation*}
解向量 \(\eta_1,\eta_2,\cdots ,\eta_{n-r}\) 满足: