假设向量组\(\alpha_1,\alpha_2,\cdots ,\alpha_s,\beta_1+\beta_2\)线性相关。由\(\alpha_1,\alpha_2,\cdots ,\alpha_s\)线性无关知,\(\beta_1+\beta_2\)可由\(\alpha_1,\alpha_2,\cdots ,\alpha_s\)线性表出,即存在\(a_1,a_2,\cdots ,a_s\in\mathbb{F}\),使得
\begin{equation}
\beta_1+\beta_2=a_1\alpha_1+a_2\alpha_2+\cdots +a_s\alpha_s.\tag{2.3}
\end{equation}
注意到\(\beta_1\)可由\(\alpha_1,\alpha_2,\cdots ,\alpha_s\)线性表出,则存在\(b_1,b_2,\cdots ,b_s\in\mathbb{F}\),使得
\begin{equation}
\beta_1=b_1\alpha_1+b_2\alpha_2+\cdots +b_s\alpha_s.\tag{2.4}
\end{equation}
\begin{equation*}
\beta_2=(a_1-b_1)\alpha_1+(a_2-b_2)\alpha_2+\cdots +(a_2-b_s)\alpha_s,
\end{equation*}
则\(\beta_2\)可由\(\alpha_1,\alpha_2,\cdots ,\alpha_s\)线性表出,与已知条件矛盾。因此向量组\(\alpha_1,\alpha_2,\cdots ,\alpha_s,\beta_1+\beta_2\)线性无关。