主要内容

高等代数教学辅导

1.2 矩阵和运算

建设中!

子节 1.2.1 主要知识点

数域\(\mathbb{F}\)上线性方程组的一般形式
\begin{equation*} \left\{ {\begin{array}{*{20}{c}} {{a_{11}}{x_1} + {a_{12}}{x_2} + \cdots + {a_{1n}}{x_n} = {b_1}}\\ {{a_{21}}{x_1} + {a_{22}}{x_2} + \cdots + {a_{2n}}{x_n} = {b_2}}\\ {\vdots}\\ {{a_{m1}}{x_1} + {a_{m2}}{x_2} + \cdots + {a_{mn}}{x_n} = {b_m}} \end{array}} \right. \end{equation*}
其中\(x_i\ (i=1,\ 2,\ \ldots,\ n)\)是未知量, \(a_{ij},\ b_i\in \mathbb{F}\ (i=1,\ 2,\ \ldots m\)\(j=1,\ 2,\ \ldots,\ n)\)

定义 1.2.1.

\(mn\)个数\(a_{ij}\ (i=1,\ 2,\ \ldots m;\ j=1,\ 2,\ \ldots,\ n) \) 排成\(m\)行、\(n\)列的矩形阵列:
\begin{equation*} A = {\color{blue} \begin{pmatrix} {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\ {{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\ \vdots & \vdots &{\ddots}& \vdots \\ {{a_{m1}}}&{{a_{m2}}}& \cdots &{{a_{mn}}} \end{pmatrix}}{=(a_{ij})_{m\times n}} \end{equation*}
称为\(m\)\(n\)列矩阵,简记为 \(m\times n\) 矩阵
  • \(a_{ij}\)---\(A\)的第\(i\)行第\(j\)列元素或第\((i,\ j)\)元素。
  • \(m\)--- 行数,\(n\)--- 列数。
  • \(m=n\),则称\(A\)是一个\(n\)方阵
  • \(a_{ii}\)---\(A\)的第\(i\)(主)对角元
  • 实矩阵: 矩阵的元素全为实数,即
    \begin{equation*} a_{ij}\in {\color{red}\mathbb{R}}(i=1,\ 2,\ \ldots,\ m;\ j=1,\ 2,\ \ldots,\ n) \end{equation*}
  • 复矩阵:矩阵的元素全为复数,即
    \begin{equation*} a_{ij}\in {\color{red}\mathbb{C}}(i=1,\ 2,\ \ldots,\ m;\ j=1,\ 2,\ \ldots,\ n) \end{equation*}
  • 零矩阵: \(0_{m\times n}\) 矩阵的元素全为\(0\),即
    \begin{equation*} a_{ij}= 0(i=1,\ 2,\ \ldots,\ m;\ j=1,\ 2,\ \ldots,\ n) \end{equation*}
Sage中生成一个矩阵的命令是matrix。
更多方式,请使用 "matrix?"命令查看官方文档。
矩阵的相等
  • \(A =(a_{ij})_{m\times n},\ \) \(B =(b_{ij})_{s\times t} \)。则\(A=B\)必须同时满足如下两个条件:
    1. \(m=s,\ n=t\)
    2. \(a_{ij}=b_{ij}\quad i=1,\ 2,\ \ldots,\ m;\ j=1,\ 2\ldots,\ n\)
  • 特别提示:具有不同行列数的零矩阵代表不同的矩阵。 如
    \begin{equation*} 0_{2\times 3}\ne 0_{1\times 6}\ne 0_{3\times 2} \end{equation*}
矩阵的加法

定义 1.2.2.

两个同为\(m\times n\) 的矩阵相加(减)后得一\(m\times n\)矩阵,其元素为两矩阵对应元素的和(差)。
\begin{equation*} A= (a_{ij})_{m\times n},\ \quad B= (b_{ij})_{m\times n} \end{equation*}
\begin{equation*} A+B= (a_{ij}+b_{ij})_{m\times n},\ \quad A-B= (a_{ij}-b_{ij})_{m\times n} \end{equation*}
\begin{equation*} \begin{pmatrix} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}}\\ {{a_{31}}}&{{a_{32}}} \end{pmatrix}+ \begin{pmatrix} {{b_{11}}}&{{b_{12}}}\\ {{b_{21}}}&{{b_{22}}}\\ {{b_{31}}}&{{b_{32}}} \end{pmatrix}= \begin{pmatrix} {{{a_{11}} + {b_{11}}}}&{{a_{12}} + {b_{12}}}\\ {{a_{21}} + {b_{21}}}&{{a_{22}} + {b_{22}}}\\ {{a_{31}} + {b_{31}}}&{{a_{32}} + {b_{32}}} \end{pmatrix} \end{equation*}
矩阵加法的运算规则
  • 交换律:\(A+B=B+A\)
  • 结合律:\((A+B)+C=A+(B+C)\)
  • 存在零元:\(0+A=A+0=A\)
  • 存在负元:\(A+(-A)=0\);其中负元 \({\color{red}-A:=}0-A=({\color{red}-a_{ij}})_{m\times n}\)
  • 加减法关系:\(A-B=A+(-B)\)
矩阵数乘

定义 1.2.3.

\(m\times n\)阶矩阵与一个数\(c\)相乘后得一\(m\times n\)矩阵,其元素为原矩阵对应元素乘以这个数。
\begin{equation*} A=(a_{ij})_{m\times n},\ \quad{\color{red}c}A=({\color{red}c}a_{ij})_{m\times n},\ \end{equation*}
\begin{equation*} {\color{red}c}\times \left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\ {{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\ \cdots & \cdots & \cdots & \cdots \\ {{a_{m1}}}&{{a_{m2}}}& \cdots &{{a_{mn}}} \end{array}} \right)\,\ \;\ = \begin{pmatrix} {{\color{red}c}{a_{11}}}&{{\color{red}c}{a_{12}}}& \cdots &{{\color{red}c}{a_{1n}}}\\ {{\color{red}c}{a_{21}}}&{{\color{red}c}{a_{22}}}& \cdots &{{\color{red}c}{a_{2n}}}\\ \cdots & \cdots & \cdots & \cdots \\ {{\color{red}c}{a_{m1}}}&{{\color{red}c}{a_{m2}}}& \cdots &{{\color{red}c}{a_{mn}}} \end{pmatrix} \end{equation*}
矩阵数乘运算规则
  • 数乘和加法的协调: \(c(A+B)=cA+cB\)
  • 数的加法与数乘的协调: \((c+d)A=cA+dA\)
  • 数的乘法与数乘的协调: \((cd)A=c(dA)\)
  • 数1与数乘的协调: \(1A=A\)
  • 数0与数乘的协调: \({\color{blue}0}A={\color{red}0_{m\times n}}\)
一些特殊矩阵:
  • 列向量:\(n=1\)的特殊矩阵
    \begin{equation*} \alpha =\left( {\begin{array}{*{20}{c}} {{a_1}}\\ {{a_2}}\\ \vdots \\ {{a_m}} \end{array}} \right) \end{equation*}
  • 行向量:\(m=1\)的特殊矩阵
    \begin{equation*} \beta = (b_1,\ b_2,\ \ldots,\ b_n) \end{equation*}
  • 注:习惯上用小写希腊字母\(\alpha,\ \beta,\ \gamma,\ \cdots\)表示列(行)向量。
  • \(n\)维标准单位向量\(\varepsilon_i\)
    \begin{equation*} {\varepsilon _1} = \left( {\begin{array}{*{20}{c}} 1\\ 0\\ \vdots \\ 0 \end{array}} \right),\ {\varepsilon _2} = \left( {\begin{array}{*{20}{c}} 0\\ 1\\ \vdots \\ 0 \end{array}} \right),\ \cdots ,\ {\varepsilon _n} = \left( {\begin{array}{*{20}{c}} 0\\ 0\\ \vdots \\ 1 \end{array}} \right) \end{equation*}
线性组合

1.2.4.

\(n\)维列向量\(\alpha = \left( {\begin{array}{*{20}{c}} {{a_1}}\\ {{a_2}}\\ \vdots \\ {{a_n}} \end{array}} \right),\ \beta = \left( {\begin{array}{*{20}{c}} {{b_1}}\\ {{b_2}}\\ \vdots \\ {{b_n}} \end{array}} \right)\)
  • \(\displaystyle { \alpha = {a_1}{\varepsilon _1} + {a_2}{\varepsilon _2} + \cdots + {a_n}{\varepsilon _n}} \)
  • \(\displaystyle \displaystyle \beta = {b_1}{\varepsilon _1} + {b_2}{\varepsilon_2} + \cdots + {b_n}{\varepsilon_n} \)
  • \(\displaystyle \alpha+\beta = {(a_1+b_1)}{\varepsilon_1} + {{(a_2+b_2)}}{\varepsilon_2} + \cdots + {{(a_n+b_n)}}{\varepsilon_n}\)
  • \({ \alpha = {a_1}{\varepsilon _1} + {a_2}{\varepsilon _2} + \cdots + {a_n}{\varepsilon _n}} \) \({\displaystyle ={\sum_{i=1}^n a_{i}\varepsilon_{i}}}\)
  • \(\displaystyle \beta = {b_1}{\varepsilon _1} + {b_2}{\varepsilon_2} + \cdots + {b_n}{\varepsilon_n} \) \(\displaystyle ={\sum_{i=1}^n b_{i}\varepsilon_{i}}\)
  • \(\alpha+\beta = {(a_1+b_1)}{\varepsilon_1} + {{(a_2+b_2)}}{\varepsilon_2} + \cdots + {{(a_n+b_n)}}{\varepsilon_n}\) \(\displaystyle ={\sum_{i=1}^n (a_i+b_{i})\varepsilon_{i}}\)
矩阵乘法

定义 1.2.5.

\(A= (a_{ij})_{{\color{blue}m}\times {\color{red}k}}\)\({\color{blue}m}\times {\color{red}k}\)矩阵,\(B=(b_{ij})_{{\color{red}k}\times {\color{blue}n}}\)\({\color{red}k}\times {\color{blue}n}\)矩阵,则\(A\)\(B\)的乘积是一个\({\color{blue}m}\times {\color{blue}n}\)矩阵\(C=(c_{ij})_{{\color{blue}m}\times {\color{blue}n}}\),其中
\begin{align*} c_{{\color{blue}i}j} & = & a_{{\color{blue}i}{\color{red}1}}b_{{\color{red}1}j} +a_{{\color{blue}i}{\color{red}2}}b_{{\color{red}2}j}+\cdots+ a_{{\color{blue}i}{\color{red}k}}b_{{\color{red}k}j}\\ & = & \sum_{s=1}^k a_{{\color{blue}i}{\color{red}s}}b_{{\color{red}s}j} \end{align*}
记作\(C=A\times B\),或简记为\(C=AB\)
1.2.6. 矩阵乘法中元素对应关系示意图(本图来源于https://texample.net/tikz/examples/)
矩阵乘积与线性方程组
  • 线性方程组的一般形式
    \begin{equation*} \left\{ {\begin{array}{*{20}{c}} {{a_{11}}{x_1} + {a_{12}}{x_2} + \cdots + {a_{1n}}{x_n} = {b_1}}\\ {{a_{21}}{x_1} + {a_{22}}{x_2} + \cdots + {a_{2n}}{x_n} = {b_2}}\\ {\vdots}\\ {{a_{m1}}{x_1} + {a_{m2}}{x_2} + \cdots + {a_{mn}}{x_n} = {b_m}} \end{array}} \right. \end{equation*}
  • \(A = {\begin{pmatrix} {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\ {{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\ \vdots & \vdots &{\ddots}& \vdots \\ {{a_{m1}}}&{{a_{m2}}}& \cdots &{{a_{mn}}} \end{pmatrix}}\)\(X = \begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{pmatrix}\)\(\beta=\begin{pmatrix} b_1\\ b_2\\ \vdots\\ b_m \end{pmatrix}\)
  • 则线性方程组可表示为\({\color{red}AX=\beta}\)。称\(A\)为线性方程组的 系数矩阵

1.2.7.

\begin{equation*} A = \begin{pmatrix} 1 & 0 & 1\\ 2 & 1 & 0 \end{pmatrix},\quad B=\begin{pmatrix} 1 & 0 & 1 & 1\\ 1 & 1 & 2 & -1\\ -1 & 0 & -1 & 0 \end{pmatrix} \end{equation*}
\(AB\)

1.2.8.

  • \(A = \begin{pmatrix} 1 & 0 & 4 \end{pmatrix}\)\(B=\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}\),求\(AB\)\(BA\)
  • \(A=\begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix}\)\(B= \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}\),求\(AB\)\(BA\)
矩阵乘积的``不可交换性’’:
  • \(AB\)可乘的前提是\(A\)的列数等于\(B\)的行数。
  • \(AB\)乘积一般不可交换。
    1. \(A_{2\times 1}\)\(B_{1\times 3}\)\(AB\)\(2\times 3\)的矩阵,但\(BA\)无意义。
    2. \(A_{3\times 1}\)\(B_{1\times 3}\)\(AB\)\(BA\)均有意义,但\(AB\)\(BA\)是阶数不同的矩阵。
    3. \(A\)\(B\)均为\(n\)阶方阵,\(AB\)\(BA\)也均为\(n\)阶方阵,但仍有可能\(AB\ne BA\)
  • \(AB=BA\),则称矩阵\(A\)\(B\) 乘积可交换,或简称\(A\)\(B\) 可交换。
矩阵乘积不满足消去律。即
\begin{equation*} A\ne0,\ AB=AC {\not\Rightarrow B=C.} \end{equation*}
  • \(AB=0\)\(A\ne 0\)\({\color{red}\not\Rightarrow}\) \(B=0\)
  • \(A=\begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix}\)\(B= \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}\)\(AB=0\),但\(A\ne0\),且\(B\ne 0\)
矩阵乘法的运算规则:
  • 乘法的结合律: \((AB)C = A(BC)\)
  • 乘法和加法的协调: \(A(B+C) = AB + AC\)\((A+B)C = AC + BC\)
  • 乘法和数乘的协调: \(cAB = (cA)B = A(cB)\)
特殊矩阵
  • 上三角矩阵\(A=\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ {\color{red}0} & a_{22} & \ddots & \vdots\\ {\color{red}\vdots} & {\color{red}\ddots} & \ddots & a_{n-1,n}\\ {\color{red}0} &{\color{red}\cdots} & {\color{red}0} & a_{nn} \end{pmatrix}\)\(a_{ij}=0\)\(\forall i>j\)\(i,j=1,2,\ldots,n\)
  • 下三角矩阵\(A=\begin{pmatrix} a_{11} & {\color{red}0} & {\color{red}\cdots} & {\color{red}0}\\ a_{21} & a_{22} & {\color{red}\ddots} & {\color{red}\vdots}\\ \vdots & \ddots & \ddots & {\color{red}0}\\ a_{n1} & \cdots & a_{n,n-1} & a_{nn} \end{pmatrix}\)\(a_{ij}=0\)\(\forall i<j\)\(i,j=1,2,\ldots,n\)
  • 严格上(下)三角矩阵 --- 对角元都为0的 上(下)三角矩阵。
  • 对角矩阵\(A\):亦记作\(\text{diag}(a_{11},a_{22},\ldots,a_{nn})\)
    \begin{equation*} A=\begin{pmatrix} {\color{red}a_{11}} & 0 & \cdots & 0\\ 0 & {\color{red}a_{22}} & \ddots & \vdots\\ \vdots & \ddots & {\color{red}\ddots} & 0\\ 0 & \cdots & 0 & {\color{red}a_{nn}} \end{pmatrix}\quad a_{ij}=0, \forall i\ne j. \end{equation*}
  • 单位矩阵\(E_n\),也记作\(I_n\)
    \begin{equation*} E_n=\begin{pmatrix} {\color{red}1} & 0 & \cdots & 0\\ 0 & {\color{red}1} & \ddots & \vdots\\ \vdots & \ddots & {\color{red}\ddots} & 0\\ 0 & \cdots & 0 & {\color{red}1} \end{pmatrix}\quad a_{ij}=\begin{cases} 0, &\text{ if } i\ne j,\\ 1, &\text{ if } i=j. \end{cases} \end{equation*}
  • 数量矩阵 \(cE_n\) (\(cI_n\)):
    \begin{equation*} cE_n=\begin{pmatrix} {\color{red}c} & 0 & \cdots & 0\\ 0 & {\color{red}c} & \ddots & \vdots\\ \vdots & \ddots & {\color{red}\ddots} & 0\\ 0 & \cdots & 0 & {\color{red}c} \end{pmatrix}\quad a_{ij}=\begin{cases} 0, &\text{ if } i\ne j,\\ c, &\text{ if } i=j. \end{cases} \end{equation*}

1.2.9.

\(A=\begin{pmatrix} a_{11} & & & \\ & a_{22} & &\\ & & \ddots & \\ & & & a_{nn} \end{pmatrix}\)\(B=\begin{pmatrix} b_{11} & & & \\ & b_{22} & &\\ & & \ddots & \\ & & & b_{nn} \end{pmatrix}\),求\(AB\)\(BA\)
特殊矩阵乘积性质
  • 对角矩阵的乘积仍是对角矩阵;
  • 上三角形矩阵的乘积仍是上三角形矩阵;
  • 下三角形矩阵的乘积仍是下三角形矩阵;
  • 对任意\(m\times n\)矩阵\(A\)\(E_m A = A = A E_n\)
  • 对任意\(m\times n\)矩阵\(A\)\(0 A = 0\)\(A0 = 0\)

定义 1.2.10.

\(A\)是一个方阵,定义方阵的幂:
\begin{equation*} A^2:= A\cdot A;\cdots; \ A^r:=A^{r-1}\cdot A=\underbrace{A\cdot A\cdot\cdots\cdot A}_{r} \end{equation*}
  • \(A^r\cdot A^s=A^{r+s}\)
  • \((A^r)^s= A^{rs}\)
  • \(AB=BA\),则\((AB)^s=A^sB^s\)
  • \(AB=BA\),则
    \begin{equation*} (A+B)^s=\sum_{i=0}^s {s\choose i} A^{s-i}B^{i} \end{equation*}

1.2.11.

  • \(A=\begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}\),求\(A^2\)
  • \(B= \begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{pmatrix}\),求\(B^2\)\(B^3\)

1.2.12.

一般的,设\(A =\begin{pmatrix} 0 & {\color{red}1} & 0 & \cdots & 0\\ 0 & 0 & {\color{red}1} & \ddots &\vdots\\ \vdots &\ddots & \ddots & {\color{red}\ddots} & 0\\ 0 & \cdots & 0 & 0 & {\color{red}1}\\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}\),求\(A^k\)

1.2.13.

\begin{equation*} A= \begin{pmatrix} \lambda & 1 & 0\\ 0 & \lambda & 1\\ 0 & 0 &\lambda \end{pmatrix}, \end{equation*}
\(A^n\)

1.2.14.

\begin{equation*} A= \begin{pmatrix} 1 & -1 & 3\\ -1 & 1 & -3\\ 2 & -2 & 6 \end{pmatrix}, \end{equation*}
\(A^{2022}\)
矩阵转置
\begin{equation*} A =\begin{pmatrix} {\color{red}a_{11}} & {\color{red}a_{12}} & {\color{red}\cdots} & {\color{red}a_{1n}}\\ {\color{blue}a_{21}} & {\color{blue}a_{22}} & {\color{blue}\cdots} & {\color{blue}a_{2n}}\\ {\color{orange}\vdots} & {\color{orange}{\vdots}} & {\color{orange}\ddots} & {\color{orange}\vdots}\\ {\color{green}a_{m1}} & {\color{green}a_{m2}} & {\color{green}\cdots} & {\color{green}a_{mn}} \end{pmatrix}_{m\times n} \to \begin{pmatrix} {\color{red}a_{11}} & {\color{blue}a_{21}} & {\color{orange}\cdots} & {\color{green}a_{m1}}\\ {\color{red}a_{12}} & {\color{blue}a_{22}} & {\color{orange}\cdots} & {\color{green}a_{m2}}\\ {\color{red}\vdots} & {\color{blue}{\vdots}} & {\color{orange}\ddots} & {\color{green}\vdots}\\ {\color{red}a_{1n}} & {\color{blue}a_{2n}} & {\color{orange}\cdots} & {\color{green}a_{mn}} \end{pmatrix}_{n\times m} =A^{T} \end{equation*}

定义 1.2.15.

\(A=(a_{ij})_{m\times n}\)\(B=(b_{ij})_{n\times m}\)。若\(b_{{\color{blue} i}{\color{red} j}} = a_{{\color{red} j}{\color{blue} i}}\)\(\forall i,j\)均成立,则称\(B\)\(A\)转置,记作\(B=A^{T}(\)\(B=A'\))。
  • 转置运算的运算法则:
    1. \((A^T)^T = A\)
    2. \((A+B)^T =A^T+B^T \)
    3. \((cA)^T = c A^T\)
    4. \({\color{red}(AB)^T= B^T A^T}\)
    5. \({\color{red}(A_1A_2\cdots A_s)^T= A_s^T A_{s-1}^T\cdots A_1^T}\)

定义 1.2.16.

一个方阵\(A\)若满足\(A=A^T\),则称\(A\)对称矩阵;若\(A= {\color{red}-} A^T\),则称\(A\)反对称矩阵
  • 对任意方阵\(A\),存在对称矩阵\(B\),反对称矩阵\(C\), 使得\(A=B+C\)

定义 1.2.17.

设复数\(z=a+bi\in \mathbb{C} (a,b\in \mathbb{R})\),称\(a-bi\)\(z\)的共轭元,记为 \(\overline{z}\)

定义 1.2.18.

复数域\(\mathbb{C}\)上矩阵\(A=(a_{jk})_{m\times n}\)共轭矩阵 \(\overline{A}\) 定义为 \(\overline{A} = (\overline{a_{jk}})_{m\times n}\)
  • 运算规则:
    1. \(\overline{(\overline{A})}=A\)
    2. \(\overline{A+B}=\overline{A}+\overline{B} \)
    3. \(\overline{cA}=\overline{c}\overline{A} \)
    4. \(\overline{AB}=\overline{A}\overline{B}\)
    5. \(\overline{(A^T)}=\overline{A}^T \)

练习 1.2.2 练习

1.

\(A= \begin{pmatrix} 1&0&-1\\2&3&1 \end{pmatrix}\)\(B=\begin{pmatrix} 2&1&-1\\0&3&2 \end{pmatrix}\),求\(A+B\)\(A-B\)\(3A-2B\)
解答.
\begin{equation*} A+B=\begin{pmatrix} 3&1&-2\\2&6&3 \end{pmatrix}, \end{equation*}
\begin{equation*} A-B=\begin{pmatrix} -1&-1&0\\2&0&-1 \end{pmatrix}, \end{equation*}
\begin{equation*} 3A-2B= \begin{pmatrix} -1&-2&-1\\6&3&-1 \end{pmatrix}. \end{equation*}

2.

\(J\)是元素全为\(1\)\(n\)阶方阵,\(E_n=\begin{pmatrix} 1&0&\cdots&0\\ 0&1&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&1 \end{pmatrix}\),请将矩阵
\begin{equation*} A=\begin{pmatrix} a&b&b&\cdots&b\\ b&a&b&\cdots&b\\ b&b&a&\cdots&b\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ b&b&b&\cdots&a \end{pmatrix} \end{equation*}
表示成\(xE_n+yJ\)的形式,其中\(x\)\(y\)为待定系数。
解答.
因为
\begin{equation*} \begin{array}{ccl} A&=&\begin{pmatrix} (a-b)+b&b&b&\cdots&b\\ b&(a-b)+b&b&\cdots&b\\ b&b&(a-b)+b&\cdots&b\\ \vdots&\vdots&\vdots&&\vdots\\ b&b&b&\cdots&(a-b)+b \end{pmatrix}\\ &=&\begin{pmatrix} a-b&0&0&\cdots&0\\ 0&a-b&0&\cdots&0\\ 0&0&a-b&\cdots&0\\ \vdots&\vdots&\vdots&&\vdots\\ 0&0&0&\cdots&a-b \end{pmatrix}+\begin{pmatrix} b&b&b&\cdots&b\\ b&b&b&\cdots&b\\ b&b&b&\cdots&b\\ \vdots&\vdots&\vdots&&\vdots\\ b&b&b&\cdots&b \end{pmatrix}, \end{array} \end{equation*}
所以取\(x=a-b,y=b\),有\(A=xE_n+yJ\)

3.

  1. \(A=\begin{pmatrix} 1&2&0\\1&-1&1 \end{pmatrix},\ B= \begin{pmatrix} 1&3\\0&1\\1&-1 \end{pmatrix}\),求\(AB\)\(BA\)
  2. \(A=\begin{pmatrix} a_1&a_2&a_3&a_4\\ b_1&b_2&b_3&b_4\\ c_1&c_2&c_3&c_4 \end{pmatrix}\)\(B=\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}\),求\(AB\)
  3. \(A=\begin{pmatrix} a_1&a_2&a_3&a_4\\ b_1&b_2&b_3&b_4\\ c_1&c_2&c_3&c_4 \end{pmatrix}\)\(B=\begin{pmatrix} 1&1&1 \end{pmatrix}\),求\(BA\)
  4. \(X^T=\begin{pmatrix} x_1&x_2&x_3 \end{pmatrix}\)\(A=\begin{pmatrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33} \end{pmatrix}\)\(X=\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}\),求\(X^TAX\)
  5. \(A=\begin{pmatrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33} \end{pmatrix}\)\(B=\begin{pmatrix} b_1&0&0\\ 0&b_2&0\\ 0&0&b_3 \end{pmatrix}\),求\(AB\)\(BA\)
解答.
  1. \(AB= \begin{pmatrix} 1&5\\2&1 \end{pmatrix},\ BA=\begin{pmatrix} 4&-1&3\\1&-1&1\\0&3&-1 \end{pmatrix}\)
  2. \(AB=\begin{pmatrix} a_1+a_2+a_3+a_4\\ b_1+b_2+b_3+b_4\\ c_1+c_2+c_3+c_4 \end{pmatrix}\)
  3. \(BA=\begin{pmatrix} a_1+b_1+c_1&a_2+b_2+c_2&a_3+b_3+c_3&a_4+b_4+c_4 \end{pmatrix}\)
  4. \begin{equation*} \begin{array}{ccl} X^TAX&=& \begin{pmatrix} \sum\limits_{i=1}^3a_{i1}x_i&\sum\limits_{i=1}^3a_{i2}x_i&\sum\limits_{i=1}^3a_{i3}x_i\\ \end{pmatrix} \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}\\ &=&(\sum\limits_{i=1}^3a_{i1}x_i)x_1+(\sum\limits_{i=1}^3a_{i2}x_i)x_2+(\sum\limits_{i=1}^3a_{i3}x_i)x_3\\ % &=&a_{11}x_1^2+a_{22}x_2^2+a_{33}x_3^2+(a_{12}+a_{21})x_1x_2+(a_{13}+a_{31})x_1x_3\\&&+(a_{23}+a_{32})x_2x_3. &=&\sum\limits_{i=1}^3\sum\limits_{j=1}^3 a_{ij}x_ix_j. \end{array} \end{equation*}
  5. \(AB=\begin{pmatrix} a_{11}b_1&a_{12}b_2&a_{13}b_3\\ a_{21}b_1&a_{22}b_2&a_{23}b_3\\ a_{31}b_1&a_{32}b_2&a_{33}b_3 \end{pmatrix}\)\(BA=\begin{pmatrix} b_1a_{11}&b_1a_{12}&b_1a_{13}\\ b_2a_{21}&b_2a_{22}&b_2a_{23}\\ b_3a_{31}&b_3a_{32}&b_3a_{33} \end{pmatrix}\)

4.

一个\(n\)阶方阵\(A\) 定义为\({\rm tr}(A)=a_{11}+a_{22}+\cdots +a_{nn}\)。证明:对任意\(n\)阶方阵\(A\)\(B\),对任意常数\(k\),有
  1. \(\displaystyle {\rm tr} (A+B)={\rm tr} (A)+{\rm tr} (B)\)
  2. \(\displaystyle {\rm tr} (kA)=k\cdot{\rm tr} (A)\)
  3. \({\rm tr} (AB)={\rm tr} (BA)\)
解答.
  1. \begin{equation*} \begin{array}{ccl} {\rm tr}(A+B)&=&(a_{11}+b_{11})+(a_{22}+b_{22})+\cdots +(a_{nn}+b_{nn})\\ &=&(a_{11}+a_{22}+\cdots +a_{nn})+(b_{11}+b_{22}+\cdots +b_{nn})\\ &=&{\rm tr}(A)+{\rm tr}(B); \end{array} \end{equation*}
  2. \({\rm tr}(kA)=ka_{11}+ka_{22}+\cdots+ka_{nn}=k(a_{11}+a_{22}+\cdots+a_{nn})=k\cdot{\rm tr}(A)\)
  3. 因为
    \begin{equation*} {\rm tr}(AB)=\sum\limits_{k=1}^na_{1k}b_{k1}+\sum\limits_{k=1}^na_{2k}b_{k2}+\cdots +\sum\limits_{k=1}^na_{nk}b_{kn}=\sum\limits_{l=1}^n\sum\limits_{k=1}^na_{lk}b_{kl}, \end{equation*}
    \begin{equation*} {\rm tr}(BA)=\sum\limits_{l=1}^nb_{1l}a_{l1}+\sum\limits_{l=1}^nb_{2l}a_{l2}+\cdots+\sum\limits_{l=1}^nb_{nl}a_{ln}=\sum\limits_{k=1}^n\sum\limits_{l=1}^nb_{kl}a_{lk}, \end{equation*}
    \(\sum\limits_{l=1}^n\sum\limits_{k=1}^na_{lk}b_{kl}=\sum\limits_{k=1}^n\sum\limits_{l=1}^nb_{kl}a_{lk}\),故\({\rm tr}(AB)={\rm tr}(BA)\)

5.

\(A=\begin{pmatrix} 0&1&0\\0&0&1\\0&0&0 \end{pmatrix}\) ,求所有与\(A\)可交换的矩阵。
解答.
\(B=(b_{ij})_{3\times 3}\)\(A\)可交换,则
\begin{equation*} \begin{pmatrix} 0&1&0\\0&0&1\\0&0&0 \end{pmatrix}\begin{pmatrix} b_{11} & b_{12}&b_{13}\\ b_{21} & b_{22}&b_{23}\\b_{31}&b_{32}&b_{33} \end{pmatrix}=\begin{pmatrix} b_{11} & b_{12}&b_{13}\\ b_{21} & b_{22}&b_{23}\\b_{31}&b_{32}&b_{33} \end{pmatrix}\begin{pmatrix} 0&1&0\\0&0&1\\0&0&0 \end{pmatrix}, \end{equation*}
\begin{equation*} \begin{pmatrix} b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\\0&0&0 \end{pmatrix}=\begin{pmatrix} 0&b_{11} & b_{12}\\0& b_{21} & b_{22}\\0&b_{31}&b_{32} \end{pmatrix}, \end{equation*}
比较等式两边,有\(b_{21}=b_{31}=b_{32}=0,b_{11}=b_{22}=b_{33},b_{12}=b_{23}\),所以与\(A\)可交换的矩阵形如\(B= \begin{pmatrix} a & b&c\\ 0 & a&b\\0&0&a \end{pmatrix}\),其中\(a,b,c\in\mathbb{F}\)

6.

证明:
  1. 如果\(A={\rm diag} (a_1,a_2,\cdots ,a_n)\),其中\(a_1,a_2,\cdots ,a_n\)两两互异,那么与矩阵\(A\)可交换的矩阵为对角矩阵;
  2. \(E_{ij}\)表示 \((i,j)\)位置为1,其余元素为0的\(n\)阶方阵。如果\(AE_{ij}=E_{ij}A\),那么当\(k\neq i \)\(a_{ki}=0\),当 \(l\neq j \)\(a_{jl}=0\),且\(a_{ii}=a_{jj}\)
  3. 如果\(A\)与所有的\(n\)阶方阵可交换,那么\(A\)一定是数量矩阵。
解答.
  1. \(B=\left(b_{ij}\right)_{n\times n}\)\(A\)可交换,即
    \begin{equation*} \begin{pmatrix} a_1&&\\ &\ddots&\\ &&a_n \end{pmatrix}\begin{pmatrix} b_{11}&\cdots&b_{1n}\\ \vdots& &\vdots\\ b_{n1}&\cdots&b_{nn}\\ \end{pmatrix}=\begin{pmatrix} b_{11}&\cdots&b_{1n}\\ \vdots& &\vdots\\ b_{n1}&\cdots&b_{nn}\\ \end{pmatrix}\begin{pmatrix} a_1&&\\ &\ddots&\\ &&a_n \end{pmatrix}, \end{equation*}
    \begin{equation*} \begin{pmatrix} a_1b_{11}&a_1b_{12}&\cdots&a_1b_{1n}\\ a_2b_{21}&a_2b_{22}&\cdots&a_2b_{2n}\\ \vdots&\vdots& &\vdots\\ a_nb_{n1}&a_nb_{n2}&\cdots&a_nb_{nn}\\ \end{pmatrix}=\begin{pmatrix} a_1b_{11}&a_2b_{12}&\cdots&a_nb_{1n}\\ a_1b_{21}&a_2b_{22}&\cdots&a_nb_{2n}\\ \vdots&\vdots& &\vdots\\ a_1b_{n1}&a_2b_{n2}&\cdots&a_nb_{nn}\\ \end{pmatrix}, \end{equation*}
    比较第\(i\)行第\(j\)列元素得\(a_ib_{ij}=a_jb_{ij}\),即\((a_i-a_j)b_{ij}=0\)。由\(a_1,a_2,\cdots ,a_n\)互异可知\(b_{ij}=0,\ \forall i\neq j\)。故与矩阵\(A\)可交换的矩阵\(B\)为对角矩阵。
  2. 因为\(AE_{ij}=E_{ij}A\),所以
    \begin{equation*} \begin{pmatrix} &&&\mbox{第j列}&&&\\ 0&\cdots&0&a_{1i}&0&\cdots&0\\ 0&\cdots&0&a_{2i}&0&\cdots&0\\ \vdots&&\vdots&\vdots&\vdots&&\vdots\\ 0&\cdots&0&a_{ni}&0&\cdots&0 \end{pmatrix}=\begin{pmatrix} 0&0&\cdots&0\\ \vdots&\vdots&&\vdots\\ 0&0&\cdots&0\\ a_{j1}&a_{j2}&\cdots&a_{jn}\\ 0&0&\cdots&0\\ \vdots&\vdots&&\vdots\\ 0&0&\cdots&0 \end{pmatrix}\mbox{第i行}, \end{equation*}
    比较第\(j\)列元素得,当\(k\neq i \)\(a_{ki}=0\);比较第\(i\)行元素得,\(l\neq j \)\(a_{jl}=0\);比较第\(i\)行第\(j\)列元素得\(a_{ii}=a_{jj}\)
  3. \((1)\)\(A\)为对角矩阵\(A={\rm diag} (a_{11},a_{22},\cdots ,a_{nn})\)。根据已知条件,对任意\(1\leq i\neq j\leq n\),有\(AE_{ij}=E_{ij}A\),由\((2)\)\(a_{ii}=a_{jj}\)。因此\(A\)是数量矩阵。

7.

\(A\)是数域\(\mathbb{F}\)上的\(n\)阶方阵,\(k\in\mathbb{F}\)。证明:若\(B\)\(C\)都与\(A\)可交换,那么\(B+C\)\(kB\)\(BC\)也都与\(A\)可交换。
解答.
由于\(B\)\(C\)都与\(A\)可交换,即\(AB=BA\)\(AC=CA\),所以
\begin{equation*} A(B+C)=AB+AC=BA+CA=(B+C)A, \end{equation*}
\begin{equation*} A(kB)=k(AB)=k(BA)=(kB)A, \end{equation*}
\begin{equation*} A(BC)=(AB)C=(BA)C=B(AC)=B(CA)=(BC)A. \end{equation*}
因此\(B+C\)\(kB\)\(BC\)也都与\(A\)可交换。

8.

计算:
  1. \(\begin{pmatrix} \cos\theta&\sin\theta\\-\sin\theta&\cos\theta \end{pmatrix}^n\)
  2. \(\begin{pmatrix} 1&-1&2\\2&-2&4\\-1&1&-2 \end{pmatrix}^n\)
  3. \(\begin{pmatrix} 1&-1&-1&-1\\-1&1&-1&-1\\-1&-1&1&-1\\-1&-1&-1&1 \end{pmatrix}^2\)\(\begin{pmatrix} 1&-1&-1&-1\\-1&1&-1&-1\\-1&-1&1&-1\\-1&-1&-1&1 \end{pmatrix}^n\)
解答.
  1. \(n=2\)时,
    \begin{equation*} \begin{pmatrix} \cos\theta&\sin\theta\\-\sin\theta&\cos\theta \end{pmatrix}^2=\begin{pmatrix} \cos^2\theta-\sin^2\theta&2\sin\theta\cos\theta\\ -2\sin\theta\cos\theta&-\sin^2\theta+\cos^2\theta \end{pmatrix}=\begin{pmatrix} \cos 2\theta&\sin 2\theta\\-\sin 2\theta&\cos 2\theta \end{pmatrix}. \end{equation*}
    假设\(\begin{pmatrix} \cos\theta&\sin\theta\\-\sin\theta&\cos\theta \end{pmatrix}^{n-1}=\begin{pmatrix} \cos (n-1)\theta&\sin (n-1)\theta\\-\sin (n-1)\theta&\cos (n-1)\theta \end{pmatrix}\),则
    \begin{align*} & & \begin{pmatrix} \cos\theta&\sin\theta\\-\sin\theta&\cos\theta \end{pmatrix}^n\\ & = & \begin{pmatrix} \cos\theta&\sin\theta\\-\sin\theta&\cos\theta \end{pmatrix}^{n-1}\cdot \begin{pmatrix} \cos\theta&\sin\theta\\-\sin\theta&\cos\theta \end{pmatrix}\\ & = & \begin{pmatrix} \cos (n-1)\theta&\sin (n-1)\theta\\-\sin(n-1)\theta&\cos(n-1)\theta \end{pmatrix}\cdot \begin{pmatrix} \cos\theta&\sin\theta\\-\sin\theta&\cos\theta \end{pmatrix}\\ & = & \left(\begin{smallmatrix} \cos (n-1)\theta\cos \theta-\sin (n-1)\theta\sin\theta&\cos (n-1)\theta\sin n\theta+\sin (n-1)\theta\cos\theta\\-\sin (n-1)\theta\cos\theta-\cos (n-1)\theta\sin\theta&-\sin (n-1)\theta\sin\theta+\cos (n-1)\theta\cos\theta \end{smallmatrix}\right)\\ & = & \begin{pmatrix} \cos n\theta&\sin n\theta\\-\sin n\theta&\cos n\theta \end{pmatrix}. \end{align*}
    综上,\(\begin{pmatrix} \cos\theta&\sin\theta\\-\sin\theta&\cos\theta \end{pmatrix}^n=\begin{pmatrix} \cos n\theta&\sin n\theta\\-\sin n\theta&\cos n\theta \end{pmatrix}\)
  2. 因为
    \begin{equation*} \begin{pmatrix} 1&-1&2\\2&-2&4\\-1&1&-2 \end{pmatrix}=\begin{pmatrix} 1\\2\\-1 \end{pmatrix}\begin{pmatrix} 1&-1&2 \end{pmatrix}, \end{equation*}
    所以
    \begin{align*} \text{原式}&=&\overbrace{\left[\begin{pmatrix} 1\\2\\-1 \end{pmatrix}\begin{pmatrix} 1&-1&2 \end{pmatrix}\right]\left[\begin{pmatrix} 1\\2\\-1 \end{pmatrix}\begin{pmatrix} 1&-1&2 \end{pmatrix}\right]\cdots \left[\begin{pmatrix} 1\\2\\-1 \end{pmatrix}\begin{pmatrix} 1&-1&2 \end{pmatrix}\right]}^{n\text{个}}\\ &=&\begin{pmatrix} 1\\2\\-1 \end{pmatrix}\overbrace{\left[\begin{pmatrix} 1&-1&2 \end{pmatrix}\begin{pmatrix} 1\\2\\-1 \end{pmatrix}\right]\cdots\left[\begin{pmatrix} 1&-1&2 \end{pmatrix}\begin{pmatrix} 1\\2\\-1 \end{pmatrix}\right]}^{n-1\text{个}} \begin{pmatrix} 1&-1&2 \end{pmatrix}\\ &=&(-3)^{n-1}\begin{pmatrix} 1&-1&2\\2&-2&4\\-1&1&-2 \end{pmatrix}. \end{align*}
  3. \(A=\begin{pmatrix} 1&-1&-1&-1\\-1&1&-1&-1\\-1&-1&1&-1\\-1&-1&-1&1 \end{pmatrix}\),则
    \begin{equation*} A^2=\begin{pmatrix} 1&-1&-1&-1\\-1&1&-1&-1\\-1&-1&1&-1\\-1&-1&-1&1 \end{pmatrix}\begin{pmatrix} 1&-1&-1&-1\\-1&1&-1&-1\\-1&-1&1&-1\\-1&-1&-1&1 \end{pmatrix}=\begin{pmatrix} 4&0&0&0\\0&4&0&0\\0&0&4&0\\0&0&0&4 \end{pmatrix}. \end{equation*}
    • \(n\)为偶数时,
      \begin{equation*} A^n=A^{2\cdot\frac{n}{2}}=(A^2)^{\frac{n}{2}}=(4E_4)^{\frac{n}{2}}=4^{\frac{n}{2}}E_4=2^nE_4; \end{equation*}
    • \(n\)为奇数时,\(n-1\)为偶数,由上面结论知\(A^{n-1}=2^{n-1}E_4\)。因此
      \begin{equation*} A^n=A^{n-1}A=2^{n-1}E_4\cdot A=\begin{pmatrix} 2^{n-1}&-2^{n-1}&-2^{n-1}&-2^{n-1}\\-2^{n-1}&2^{n-1}&-2^{n-1}&-2^{n-1}\\-2^{n-1}&-2^{n-1}&2^{n-1}&-2^{n-1}\\-2^{n-1}&-2^{n-1}&-2^{n-1}&2^{n-1} \end{pmatrix}. \end{equation*}

9.

\(A=\begin{pmatrix} 1&0&1\\0&2&0\\1&0&1 \end{pmatrix}\)\(n\geq 2\),计算\(A^n-2A^{n-1}\)
解答.
因为
\begin{equation*} A^2=\begin{pmatrix} 1&0&1\\0&2&0\\1&0&1 \end{pmatrix}\begin{pmatrix} 1&0&1\\0&2&0\\1&0&1 \end{pmatrix}=\begin{pmatrix} 2&0&2\\0&4&0\\2&0&2 \end{pmatrix}=2A, \end{equation*}
所以当\(n\geq 2\)时,
\begin{equation*} A^n=A^2\cdot A^{n-2}=2A\cdot A^{n-2}=2A^{n-1}, \end{equation*}
\(A^n-2A^{n-1}=0\)

10.

\(A\)\(n\)阶方阵且\(A^k=0\),求\((E_n-A)(E_n+A+A^2+\cdots +A^{k-1})\)
解答.
\(A^k=0\),所以
\begin{equation*} \begin{array}{cl} &(E_n-A)(E_n+A+A^2+\cdots +A^{k-1})\\=&(E_n+A+A^2+\cdots +A^{k-1})-(A+A^2+\cdots +A^{k-1}+A^k)\\=&E_n-A^k=E_n. \end{array} \end{equation*}

11.

\(A\)\(B\)是数域\(\mathbb{F}\)\(n\)阶方阵,满足\(A=\frac{1}{2}(B+E_n)\)。证明:\(A^2=A\)的充分必要条件是\(B^2=E_n\)
解答.
“充分性”:因为\(B^2=E_n\),所以
\begin{equation*} A^2=[\frac{1}{2}(B+E_n)]^2=\frac{1}{4}(B^2+2B+E_n)=\frac{1}{2}(B+E_n)=A. \end{equation*}
“必要性”:因为\(A^2=A\),所以\([\frac{1}{2}(B+E_n)]^2=\frac{1}{2}(B+E_n)\),即
\begin{equation*} \frac{1}{4}(B^2+2B+E_n)=\frac{1}{2}(B+E_n), \end{equation*}
\(B^2+2B+E_n=2B+2E_n\),整理得\(B^2=E_n\)

12.

\(A\)\(B\)都是数域\(\mathbb{F}\)\(n\)阶方阵。如果\(A^2=B^2\),是否可推出\(A=B\)\(A=-B\)?若正确请证明,若不正确请举出一个反例。
解答.
不正确。比如,\(A=E_n\)\(B={\rm diag} (-1,1,\cdots ,1)\),则\(A^2=B^2\),但\(A\neq B\)\(A\neq -B\)

13.

\(A,B\)\(n\)阶对称矩阵,证明:\(AB\)是对称矩阵的充分必要条件是\(AB=BA\)
解答.
\(\Rightarrow\)因为\(AB\)是对称矩阵,所以\(AB=(AB)^T=B^TA^T=BA\)
\(\Leftarrow\)\(AB=BA\),则\((AB)^T=B^TA^T=BA=AB\),所以\(AB\)是对称矩阵。

14.

证明:如果\(A\)\(B\)都是\(n\)阶反对称矩阵,那么\(AB-BA\)也是反对称矩阵。
解答.
因为\(A^T=-A\)\(B^T=-B\),所以
\begin{equation*} (AB-BA)^T=B^TA^T-A^TB^T=(-B)(-A)-(-A)(-B)=-(AB-BA), \end{equation*}
\(AB-BA\)是反对称矩阵。

15.

\(A\)\(m\times n\)实矩阵,证明:\(A=0\)的充分必要条件是\(A^TA=0\)
解答.
“必要性”显然成立。
“充分性”:设\(A=(a_{ij})_{m\times n}\),则
\begin{equation*} A^TA=\begin{pmatrix} \sum\limits_{i=1}^ma_{i1}^2&*&\cdots&*\\ *&\sum\limits_{i=1}^ma_{i2}^2&\cdots&*\\ \vdots&\vdots&\ddots&\vdots\\ *&*&\cdots&\sum\limits_{i=1}^ma_{in}^2 \end{pmatrix}. \end{equation*}
由于\(A^TA=0\),所以其对角元\(\sum\limits_{i=1}^ma_{i1}^2=\sum\limits_{i=1}^ma_{i2}^2=\cdots=\sum\limits_{i=1}^ma_{in}^2=0\)。注意到\(a_{ij}\in\mathbb{R}\),因此\(a_{ij}=0,\forall 1\leq i\leq m,\ 1\leq j\leq n\),即\(A=0\)

16.

\(A\)\(m\times n\)复矩阵,证明:\(A=0\)的充分必要条件是\(\overline{A}^TA=0\)
解答.
“必要性”显然成立。
“充分性”:设\(A=(a_{ij})_{m\times n}\),则
\begin{equation*} \overline{A}^TA=\begin{pmatrix} \sum\limits_{i=1}^m\overline{a_{i1}}a_{i1}&*&\cdots&*\\ *&\sum\limits_{i=1}^m\overline{a_{i2}}a_{i2}&\cdots&*\\ \vdots&\vdots&\ddots&\vdots\\ *&*&\cdots&\sum\limits_{i=1}^m\overline{a_{in}}a_{in} \end{pmatrix}. \end{equation*}
由于\(\overline{A}^TA=0\),所以其对角元\(\sum\limits_{i=1}^m|a_{i1}|^2=\sum\limits_{i=1}^m|a_{i2}|^2=\cdots=\sum\limits_{i=1}^m|a_{in}|^2=0\)。注意到\(|a_{ij}|\in\mathbb{R}\),因此\(|a_{ij}|=0,\forall 1\leq i\leq m,\ 1\leq j\leq n\),即\(A=0\)

17.

\(A\)\(n\)阶复矩阵,若\(\overline{A^T}=A\),则称\(A\)是一个Hermite矩阵。若 \(\overline{A^T}=-A\),则称\(A\)是一个斜Hermite矩阵。证明:任一复\(n\)阶矩阵均可表示成一个Hermite矩阵与一个斜Hermite矩阵之和。
解答.
对任一复\(n\)阶矩阵\(A\),设\(A = B+C\),其中\(B\)是Hermite矩阵,\(C\)是斜Hermite矩阵。等式两端同时取共轭转置得\(\overline{A^T} = B-C\),连立两个等式解得:
\begin{equation*} B = \frac{A+\overline{A^T} }{2},\quad C =\frac{A-\overline{A^T} }{2}, \end{equation*}
容易验证\(B\)是Hermite矩阵,\(C\)是斜Hermite矩阵,结论成立。