先正交化,令
\begin{equation*}
\begin{array}{ccl}
\beta_1&=&\alpha_1=(1,2,2,-1)^T,\\
\beta_2&=&\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1\\
&=&(1,1,-5,3)^T-\frac{1+2-10-3}{1+4+4+1}(1,2,2,-1)^T\\
&=&(2,3,-3,2)^T,\\
\beta_3&=&\alpha_3-\frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}\beta_2\\
&=&(3,2,8,-7)^T-\frac{3+4+16+7}{1+4+4+1}(1,2,2,-1)^T-\frac{6+6-24-14}{4+9+9+4}(2,3,-3,2)^T\\
&=&(2,-1,-1,-2)^T,
\end{array}
\end{equation*}
再单位化,令\(\gamma_1=\frac{1}{\|\beta_1\|}\beta_1=\frac{1}{\sqrt{10}}(1,2,2,-1)^T,\) \(\gamma_2=\frac{1}{\|\beta_2\|}\beta_2=\frac{1}{\sqrt{26}}(2,3,-3,2)^T,\)
\begin{equation*}
\gamma_3=\frac{1}{\|\beta_3\|}\beta_3=\frac{1}{\sqrt{10}}(2,-1,-1,-2)^T,
\end{equation*}
得与向量组\(\alpha_1,\alpha_2,\alpha_3\)等价的标准正交向量组\(\gamma_1,\gamma_2,\gamma_3\)。