(1)
\begin{equation*}
\begin{array}{l}A(\lambda)\stackrel{E(1,2(1))}{\longrightarrow}\begin{pmatrix}
1&\lambda^2+\lambda&0\\
\lambda&\lambda&-\lambda\\
1+\lambda^2&\lambda^2&-\lambda^2
\end{pmatrix}
\xrightarrow[E(1,2(-\lambda^2- \lambda))]{ }\begin{pmatrix}
1&0&0\\
\lambda&-\lambda^3- \lambda^2+\lambda&-\lambda\\
1+\lambda^2&-\lambda^4- \lambda^3- \lambda&-\lambda^2
\end{pmatrix}\\
\xrightarrow{{\begin{array}{c}
E(2,1(-\lambda))\\E(3,1(- \lambda^2-1))
\end{array}}}\begin{pmatrix}
1&0&0\\
0&-\lambda^3- \lambda^2+\lambda&-\lambda\\
0&-\lambda^4- \lambda^3- \lambda&-\lambda^2
\end{pmatrix}\xrightarrow[E(2,3)]{}\begin{pmatrix}
1&0&0\\
0&-\lambda&-\lambda^3- \lambda^2+\lambda\\
0&-\lambda^2&-\lambda^4- \lambda^3- \lambda
\end{pmatrix}\\
\xrightarrow{E(3,2(- \lambda))}\begin{pmatrix}
1&0&0\\
0&-\lambda&-\lambda^3- \lambda^2+\lambda\\
0&0&-\lambda^2- \lambda
\end{pmatrix}\xrightarrow[E(2,3(- \lambda^2- \lambda+1))]{}\begin{pmatrix}
1&0&0\\
0&-\lambda&0\\
0&0&-\lambda^2- \lambda
\end{pmatrix}\\
\xrightarrow{E(2(-1)),E(3(-1))}\begin{pmatrix}
1&0&0\\
0&\lambda&0\\
0&0&\lambda^2+\lambda
\end{pmatrix}
\end{array}
\end{equation*}
(2)
\begin{equation*}
\begin{array}{ccl}A(\lambda)&\xrightarrow[{\begin{array}{c}
E(1,4)\\E(2,3)
\end{array}}]{}&\begin{pmatrix}
\lambda^2&0&0&0\\
0&\lambda^2-\lambda&0&0\\
0&0&(\lambda-1)^2&0\\
0&0&0&\lambda^2-\lambda
\end{pmatrix}\\
&\xrightarrow{E(1,2(1)) }&\begin{pmatrix}
\lambda^2&\lambda^2-\lambda&0&0\\
0&\lambda^2-\lambda&0&0\\
0&0&(\lambda-1)^2&0\\
0&0&0&\lambda^2-\lambda
\end{pmatrix}\\
&\xrightarrow[E(1,2(-1))]{}&\begin{pmatrix}
\lambda^2&-\lambda&0&0\\
0&\lambda^2-\lambda&0&0\\
0&0&(\lambda-1)^2&0\\
0&0&0&\lambda^2-\lambda
\end{pmatrix}
\end{array}
\end{equation*}
\begin{equation*}
\begin{array}{cl}
\xrightarrow[E(1,2)]{}&\begin{pmatrix}
-\lambda&\lambda^2&0&0\\
\lambda^2-\lambda&0&0&0\\
0&0&(\lambda-1)^2&0\\
0&0&0&\lambda^2-\lambda
\end{pmatrix}\\
\xrightarrow{E(1,3(\lambda-1))}&\begin{pmatrix}
-\lambda&\lambda^2&(\lambda-1)^2&0\\
\lambda^2-\lambda&0&0&0\\
0&0&(\lambda-1)^2&0\\
0&0&0&\lambda^2-\lambda
\end{pmatrix}\\
\xrightarrow[E(3,1(\lambda-2))]{}&\begin{pmatrix}
-\lambda&\lambda^2&1&0\\
\lambda^2-\lambda&0&(\lambda^2- \lambda)(\lambda-2)&0\\
0&0&(\lambda-1)^2&0\\
0&0&0&\lambda^2-\lambda
\end{pmatrix}\\
\xrightarrow[E(1,3)]{}&\begin{pmatrix}
1&\lambda^2&-\lambda&0\\
(\lambda^2- \lambda)(\lambda-2)&0&\lambda^2-\lambda&0\\
(\lambda-1)^2& 0&0&0\\
0&0&0&\lambda^2-\lambda
\end{pmatrix}
\end{array}
\end{equation*}
\begin{equation*}
\begin{array}{cl}
\xrightarrow[{\begin{array}{c}
E(1,2(-\lambda^2))\\E(1,3(\lambda))
\end{array}}]{{\begin{array}{c}
E(2,1(-(\lambda^2- \lambda)(\lambda-2)))\\E(3,1(-(\lambda-1)^2))
\end{array}}}&\begin{pmatrix}
1&0&0&0\\
0&-\lambda^3(\lambda- 1)(\lambda-2)&\lambda (\lambda-1)^3&0\\
0& -\lambda^2(\lambda-1)^2&\lambda(\lambda-1)^2&0\\
0&0&0&\lambda^2-\lambda
\end{pmatrix}\\
\xrightarrow[E(2,4)]{E(2,4)}&\begin{pmatrix}
1&0&0&0\\
0&\lambda(\lambda- 1)&0&0\\
0& 0&\lambda(\lambda-1)^2&-\lambda^2(\lambda-1)^2\\
0&0&\lambda(\lambda-1)^3&-\lambda^3(\lambda-1)(\lambda-2)
\end{pmatrix}\\
\xrightarrow{E(4,3(1- \lambda))}&\begin{pmatrix}
1&0&0&0\\
0&\lambda(\lambda- 1)&0&0\\
0& 0&\lambda(\lambda-1)^2&-\lambda^2(\lambda-1)^2\\
0&0&0&\lambda^2(\lambda-1)
\end{pmatrix}\\
\xrightarrow{E(3,4(1))}&\begin{pmatrix}
1&0&0&0\\
0&\lambda(\lambda- 1)&0&0\\
0& 0&\lambda(\lambda-1)^2&-\lambda^2(\lambda-1)(\lambda-2)\\
0&0&0&\lambda^2(\lambda-1)
\end{pmatrix}
\end{array}
\end{equation*}
\begin{equation*}
\begin{array}{cl}
\xrightarrow[E(3,4(\lambda-1))]{}&\begin{pmatrix}
1&0&0&0\\
0&\lambda(\lambda- 1)&0&0\\
0& 0&\lambda(\lambda-1)^2&\lambda(\lambda-1)\\
0&0&0&\lambda^2(\lambda-1)
\end{pmatrix}\\
\xrightarrow[E(3,4)]{}&\begin{pmatrix}
1&0&0&0\\
0&\lambda(\lambda- 1)&0&0\\
0& 0&\lambda(\lambda-1)&\lambda(\lambda-1)^2\\
0&0&\lambda^2(\lambda-1) &0
\end{pmatrix}\\
\xrightarrow[E(3,4(1- \lambda))]{E(4,3(-\lambda))}&\begin{pmatrix}
1&0&0&0\\
0&\lambda(\lambda- 1)&0&0\\
0& 0&\lambda(\lambda-1)&0\\
0&0&0&-\lambda^2(\lambda-1)^2
\end{pmatrix}\\
\xrightarrow{E(4(-1))}&\begin{pmatrix}
1&0&0&0\\
0&\lambda(\lambda- 1)&0&0\\
0& 0&\lambda(\lambda-1)&0\\
0&0&0&\lambda^2(\lambda-1)^2
\end{pmatrix}.
\end{array}
\end{equation*}