主要内容

高等代数教学辅导

1.4 行列式

  • 行列式的概念最早是由十七世纪日本数学家 关孝和 提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。
    关孝和
    1.4.1. 关孝和
  • 欧洲第一个提出行列式概念的是德国的数学家 莱布尼茨。
    莱布尼茨
    1.4.2. 莱布尼茨
  • 德国数学家 雅可比 于1841年总结并提出了行列式的系统理论。
    雅可比
    1.4.3. 雅可比

子节 1.4.1 主要知识点

用消元法解线性方程组:
\begin{equation} \left\{\begin{array}{rcl} a_{11}x_1+a_{12}x_2 & = & b_1, \\ a_{21}x_1+a_{22}x_2 & = & b_2 \end{array}\right.\tag{1.1} \end{equation}
得:
\begin{equation*} ({a_{11}a_{22}-a_{12}a_{21}})x_1=b_1a_{22}-b_2a_{12};\quad ({a_{11}a_{22}-a_{12}a_{21}})x_2=a_{11}b_2-b_1a_{21}; \end{equation*}
\(a_{11}a_{22}-a_{12}a_{21}\ne0\)时,原方程有唯一解:
\begin{equation*} x_1=\frac{b_1a_{22}-b_2a_{12}}{{\color{red}a_{11}a_{22}-a_{12}a_{21}}},\quad x_2=\frac{a_{11}b_2-b_1a_{21}}{{\color{red}a_{11}a_{22}-a_{12}a_{21}}} \end{equation*}
可见\(a_{11}a_{22}-a_{12}a_{21}\) 有特殊重要意义。

定义 1.4.4. 二阶行列式.

\(A=\begin{pmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{pmatrix}\),称\({\color{red}a_{11}a_{22}}{\color{blue}-a_{12}a_{21}}\)为矩阵\(A\)的行列式,记作
\begin{equation*} {\color{red}\det A}\quad \text{或}\quad {\color{red}\begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{vmatrix}} \end{equation*}
二阶行列式的计算有一种便于记忆的『图示』法则:
1.4.5. 二阶行列式的计算
\(\det A\ne0\)时,方程组 (1.1) 有唯一解:
\begin{align*} x_1 & = & \frac{b_1a_{22}-b_2a_{12}}{{a_{11}a_{22}-a_{12}a_{21}}} \\ & = & \frac{\begin{vmatrix} {\color{red}b_{1}} & a_{12}\\ {\color{red}b_{2}} & a_{22}\\ \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22}\\ \end{vmatrix}} \\ x_2 & = & \frac{a_{11}b_2-b_1a_{21}}{{a_{11}a_{22}-a_{12}a_{21}}}\\ & = & \frac{\begin{vmatrix} a_{11} & {\color{red}b_{1}}\\ a_{21} & {\color{red}b_{2}}\\ \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22}\\ \end{vmatrix}} \end{align*}

定义 1.4.6. 三阶行列式.

\(A= \begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{pmatrix}\),定义
\begin{align*} \end{align*}
可以验证线性方程组
\begin{equation*} \begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{pmatrix}\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}=\begin{pmatrix} b_1\\b_2\\b_3 \end{pmatrix} \end{equation*}
的解为
\begin{equation*} x_1=\frac{\begin{vmatrix} {\color{red}b_{1}} & a_{12} & a_{13}\\ {\color{red}b_{2}} & a_{22} & a_{23}\\ {\color{red}b_{3}} & a_{32} & a_{33} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix}},x_2=\frac{\begin{vmatrix} a_{11} & {\color{red}b_{1}} & a_{13}\\ a_{21} & {\color{red}b_{2}} & a_{23}\\ a_{31} & {\color{red}b_{3}} & a_{33} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix}},x_3=\frac{\begin{vmatrix} a_{11} & a_{12} & {\color{red}b_{1}}\\ a_{21} & a_{22} & {\color{red}b_{2}}\\ a_{31} & a_{32} & {\color{red}b_{3}} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix}} \end{equation*}
对于一般的线性方程组
\begin{equation*} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \ddots & \vdots\\ \vdots & \ddots & \ddots & a_{n-1,n}\\ a_{n1} & \cdots&a_{n,n-1} & a_{nn} \end{pmatrix}\begin{pmatrix} x_1 \\ x_2\\ \vdots \\x_n \end{pmatrix}=\begin{pmatrix} b_1 \\ b_2\\ \vdots \\b_n \end{pmatrix} \end{equation*}
是否有类似的结论?

定义 1.4.7. 行列式的递归定义.

  1. 一阶矩阵\(A=(a_{11})\)的 行列式,记为\(\blue{\det A}\)\(\blue{|A|}\),定义为
    \begin{equation*} \det A = a_{11}. \end{equation*}
  2. \(n(n>1)\)阶矩阵 \(A=(a_{ij})_{n\times n}\)行列式 ,记作
    \begin{equation*} \det A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \ddots & \vdots\\ \vdots & \ddots & \ddots & a_{n-1,n}\\ a_{n1} & \cdots&a_{n,n-1} & a_{nn} \end{vmatrix} \end{equation*}
    定义为
    \begin{equation*} \det A = \sum_{j=1}^n (-1)^{j+1} a_{j1}\cdot \begin{vmatrix} a_{12} & a_{13} & \cdots & a_{1n}\\ \vdots & \vdots & \ddots & \vdots\\ a_{j-1,2} & a_{j-1,3} & \cdots & a_{j-1,n}\\ a_{j+1,2} & a_{j+1,3} & \cdots & a_{j+1,n}\\ \vdots & \vdots & \ddots & \vdots\\ a_{n2} & a_{n3} & \cdots & a_{nn} \end{vmatrix}. \end{equation*}
\(\begin{vmatrix} a_{11} & \cdots & a_{1,j-1} & a_{1,j+1} &\cdots & a_{1n}\\ \vdots & \ddots & \vdots & \vdots &\ddots & \vdots\\ a_{i-1,1} &\cdots & a_{i-1,j-1} & a_{i-1,j+1} &\cdots & a_{i-1,n}\\ a_{i+1,1} &\cdots & a_{i+1,j-1} & a_{i+1,j+1} &\cdots & a_{i+1,n}\\ \vdots & \ddots & \vdots & \vdots &\ddots & \vdots\\ a_{n2} & a_{n3} & \cdots & a_{nn} \end{vmatrix}\triangleq M_{ij}\)\((-1)^{i+j}M_{ij}\triangleq A_{ij} \)。称 \(M_{ij}\)为元素 \(a_{ij}\)的余子式,\(A_{ij}\)为元素 \(a_{ij}\)的代数余子式。则行列式的定义也可改写为:

定义 1.4.8.

\(A=(a_{ij})_{n\times n}\),则
  1. \(n=1\)时,\(\det A = a_{11}\)
  2. \(n>1\)时,
    \begin{align*} \det A & = & a_{11}M_{11}{\color{red}-}a_{21}M_{21}+\cdots+{\color{red}(-1)^{n+1}}a_{n1}M_{n1} \\ & = & a_{11}A_{11}+a_{21}A_{21}+\cdots+a_{n1}A_{n1} \\ & = & \sum_{i=1}^n (-1)^{{\color{red}i+1}} a_{i1} M_{i1} =\sum_{i=1}^na_{i1}A_{i1} \end{align*}
三阶行列式可用下面图示方法进行计算。4阶及4阶以上行列式不遵循此规则!
1.4.9. 三阶行列式计算
\begin{align*} & = & {a_{11}\begin{vmatrix} a_{22} & a_{23}\\ a_{32} & a_{33} \end{vmatrix}}{{\color{red}-}a_{21}\begin{vmatrix} a_{12} & a_{13}\\ a_{32} & a_{33} \end{vmatrix}} {+a_{31}\begin{vmatrix} a_{12} & a_{13}\\ a_{22} & a_{23} \end{vmatrix}} \\ & = &\alert {a_{11}a_{22}a_{33} + a_{13}a_{21}a_{32}+ a_{12}a_{23}a_{31}} \\ & & {\color{blue}-a_{11}a_{32}a_{23}-a_{12}a_{21}a_{33}- a_{13}a_{22}a_{31} } \end{align*}

1.4.12.

\begin{equation*} \begin{vmatrix} & & & & a_{1,n}\\ & & & a_{2,n-1} & a_{2,n}\\ & &\iddots&\vdots &\vdots\\ & a_{n-1,2} & \cdots &a_{n-1,n-1} &a_{n-1,n}\\ a_{n,1} & a_{n,2} & \cdots & a_{n,n-1} & a_{n,n} \end{vmatrix} =(-1)^{\frac{n(n-1)}{2}} a_{1,n}a_{2,n-1}\cdots a_{n,1} \end{equation*}
归纳法(对行列式阶数)
  1. 验证结论对\(n = 1\)(或2)时成立;
  2. 归纳假设对任意满足命题条件的\(n-1\)或小于\(n\)阶行列式命题成立;
  3. 利用2的假设证明命题对\(n\)阶行列式也成立。
思考:设\(A\)是数域\(F\)上的\(n\)阶矩阵,\(c\in F\),则\(\det(cA)=c\det A\)
\begin{equation*} {\color{red}\det (cA)=c^n\det A}. \end{equation*}
行列式的性质2
\begin{equation*} \begin{vmatrix} a_{11} & \cdots &{\color{blue} a_{1,j}}+{\color{red}b_{1,j}} & \cdots & a_{1n}\\ \vdots & \vdots & {\color{red}\vdots} & \vdots & \vdots\\ {a_{i,1}} & {\cdots} &{\color{blue} a_{i,j}}+ {\color{red}b_{i,j}} & {\cdots} & {a_{i,n}}\\ \vdots & \vdots & {\color{red}\vdots} & \vdots & \vdots\\ a_{n,1} & \cdots & {\color{blue} a_{n,j}}+{\color{red}b_{n,j}} & \cdots & a_{n,n} \end{vmatrix} \end{equation*}
\begin{equation*} = \begin{vmatrix} a_{11} & \cdots &{\color{blue} a_{1,j}} & \cdots & a_{1n}\\ \vdots & \vdots & {\color{blue}\vdots} & \vdots & \vdots\\ {a_{i,1}} & {\cdots} &{\color{blue} a_{i,j}} & {\cdots} & {a_{i,n}}\\ \vdots & \vdots & {\color{blue} \vdots} & \vdots & \vdots\\ a_{n,1} & \cdots & {\color{blue} a_{n,j}} & \cdots & a_{n,n} \end{vmatrix}+\begin{vmatrix} a_{11} & \cdots &{\color{red}b_{1,j}} & \cdots & a_{1n}\\ \vdots & \vdots & {\color{red}\vdots} & \vdots & \vdots\\ {a_{i,1}} & {\cdots} & {\color{red}b_{i,j}} & {\cdots} & {a_{i,n}}\\ \vdots & \vdots & {\color{red}\vdots} & \vdots & \vdots\\ a_{n,1} & \cdots & {\color{red}b_{n,j}} & \cdots & a_{n,n} \end{vmatrix} \end{equation*}
注意:性质2中只能对某一列进行分拆,其它列保持不变。
  • \begin{equation*} \begin{vmatrix} a+b & c+d\\ e+f & g+h \end{vmatrix}{\color{red}\ne} \begin{vmatrix} a & c\\ e & g \end{vmatrix}+\begin{vmatrix} b & d\\ f & h \end{vmatrix} \end{equation*}
    即一般情况下,给定\(n\)阶矩阵\(A,B\)
    \begin{equation*} {\color{red}\det(A+B)\neq \det A+\det B}. \end{equation*}
行列式性质3
行列式性质4
行列式性质5
  • 行列式中行与列具有同等的地位,因此行列式的性质凡是对行成立的对列也同样成立;对列成立的对行也同样成立。
行列式按行展开
\begin{align*} & &\begin{vmatrix} a_{11} & a_{12} &\cdots & a_{1n}\\ a_{21} & a_{22} &\cdots & a_{2n}\\ \vdots & \vdots &\ddots &\vdots\\ a_{n1} & a_{n2} &\cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} &\cdots & a_{1n}\\ {\color{red}0} & a_{22} &\cdots & a_{2n}\\ {\color{red}\vdots} & \vdots &\ddots &\vdots\\ {\color{red}0} & a_{n2} &\cdots & a_{nn} \end{vmatrix}+ \begin{vmatrix} {\color{red}0} & a_{12} &\cdots & a_{1n}\\ a_{21} & a_{22} &\cdots & a_{2n}\\ \vdots & \vdots &\ddots &\vdots\\ a_{n1} & a_{n2} &\cdots & a_{nn} \end{vmatrix} \\ & = & a_{11}A_{11}+\begin{vmatrix} {\color{red}0} & a_{12} &\cdots & a_{1n}\\ a_{21} & {\color{red}0} &\cdots & a_{2n}\\ \vdots & {\color{red}\vdots} &\ddots &\vdots\\ a_{n1} & {\color{red}0} &\cdots & a_{nn} \end{vmatrix}+\begin{vmatrix} {\color{red}0} & {\color{red}0} &\cdots & a_{1n}\\ a_{21} & a_{22} &\cdots & a_{2n}\\ \vdots & \vdots &\ddots &\vdots\\ a_{n1} & a_{n2} &\cdots & a_{nn} \end{vmatrix} \\ & = & a_{11}A_{11} +a_{12}A_{12}+\cdots+\begin{vmatrix} {\color{red}0} & {\color{red}0} &{\color{red}\cdots} & a_{1n}\\ a_{21} & a_{22} &\cdots & {\color{red}0}\\ \vdots & \vdots &\ddots &{\color{red}\vdots}\\ a_{n1} & a_{n2} &\cdots & {\color{red}0} \end{vmatrix}+\begin{vmatrix} {\color{red}0} & {\color{red}0} &{\color{red}\cdots} & {\color{red}0}\\ a_{21} & a_{22} &\cdots & a_{2n}\\ \vdots & \vdots &\ddots &\vdots\\ a_{n1} & a_{n2} &\cdots & a_{nn} \end{vmatrix} \end{align*}

1.4.23.

\(n\)阶矩阵\(A=(a_{ij})_{n\times n}\)为反对称矩阵,即
\begin{equation*} a_{ij}=-a_{ji},\quad i,j=1,2,\ldots,n. \end{equation*}
证明:当\(n\)为奇数时,\(\det A =0\)
行列式的计算
  1. 三角化法:
    • 通过恒等变形化为上(下)三角行列式。
  2. 降阶法:
    • 直接降阶:按行列式中非零元素较少的行(列)展开。
    • 间接降阶:利用行列式性质, 使行列式的某行(列)具有较少的非零元, 再按其展开。

1.4.25.

\begin{equation*} \begin{vmatrix} 1& 2 & -1 & 2\\ 3& 0 & 1 & 5\\ 1& -2 & 0 & 3\\ -2& -4 & 1 & 6 \end{vmatrix},\quad \begin{vmatrix} 30 & 0 & 150 & 120\\ 1 & 2 & 5 & 6\\ 2 & 0 & -3 & 0 \\ 5 & 0 & 1 & 2 \end{vmatrix} \end{equation*}

1.4.26. 爪形行列式.

\(a_i\ne 0,\ 1\le i\le n\),求行列式
\begin{equation*} \begin{vmatrix} a_0 & b_1 & \cdots & b_n \\ c_1& a_1 & & \\ \vdots & & \ddots & \\ c_n& & & a_n \end{vmatrix}. \end{equation*}
解答.
\begin{equation*} (a_0-\sum_{i=1}^n\frac{b_ic_i}{a_i})a_1a_2\cdots a_n. \end{equation*}

1.4.27. 多项式与行列式.

\begin{equation*} \begin{vmatrix} \lambda & & & & & a_n\\ -1& \lambda & & & & a_{n-1}\\ & -1 & \lambda & & & a_{n-2} \\ & &\ddots & \ddots & & \vdots\\ & & & -1 &\lambda & a_2 \\ & & & & -1 & \lambda+a_1\\ \end{vmatrix} \end{equation*}
解答.
\begin{equation*} \lambda^n+a_1\lambda^{n-1}+a_2\lambda^{n-2}+\cdots+a_n. \end{equation*}

1.4.28.

\begin{equation*} \begin{vmatrix} x & a & \cdots & a\\ a & x & \ddots &\vdots\\ \vdots & \ddots &\ddots & a\\ a & \cdots & a & x \end{vmatrix} \end{equation*}

1.4.29. Vander monde行列式.

\begin{equation*} V_n = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots& \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix} \end{equation*}
解答.
\begin{equation*} \prod_{1\le j< i\le n}(x_i-x_j) \end{equation*}
证明.
\begin{align*} & & \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots& \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix} \xrightarrow{c_n- x_n\cdot c_{n-1}} \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-2}(x_1-x_n) \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-2}(x_2-x_n) \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-2}(x_3-x_n) \\ \vdots& \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & 0 \end{vmatrix} \\ & & \xrightarrow{c_{n-1}-x_n\cdot c_{n-2},\cdots, c_2-x_n\cdot c_1} \begin{vmatrix} 1 & x_1-x_n & x_1(x_1-x_n) & \cdots & x_1^{n-2}(x_1-x_n) \\ 1 & x_2-x_n & x_2(x_2-x_n) & \cdots & x_2^{n-2}(x_2-x_n) \\ 1 & x_3-x_n & x_3(x_3-x_n) & \cdots & x_3^{n-2}(x_3-x_n) \\ \vdots& \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \\ \end{vmatrix} \\ & & = (-1)^{n+1}\prod_{j=1}^{n-1}(x_j-x_n) \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-2} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-2} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-2} \\ \vdots& \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-2} \end{vmatrix} = \prod_{j=1}^{n-1}(x_n-x_j) V_{n-1} \end{align*}

1.4.30.

比较下列行列式的第一列元素余子式
\begin{equation*} \begin{vmatrix} {a_{11}} & a_{12} & a_{13}\\ {a_{21}} & a_{22} & a_{23}\\ {a_{31}} & a_{32} & a_{33} \end{vmatrix},\quad \begin{vmatrix} u & a_{12} & a_{13}\\ v & a_{22} & a_{23}\\ w & a_{32} & a_{33} \end{vmatrix} \end{equation*}
行列式性质7(重要公式)

1.4.32.

\begin{equation*} \det A = \begin{vmatrix} 2 & 1 & 3 & -1\\ 4 & 2 & 4 & -3\\ 3 & 5 & 0 & 1\\ 5 & 6 & 2 & 4 \\ \end{vmatrix}, \end{equation*}
\(M_{11}+M_{12}+M_{13}+M_{14} \)
解答.
\begin{equation*} \begin{array}{rcl} & & M_{11}+M_{12}+M_{13}+M_{14}\\ & = & \begin{vmatrix} 1 & -1 & 1 & -1\\ 4 & 2 & 4 & -3\\ 3 & 5 & 0 & 1\\ 5 & 6 & 2 & 4 \\ \end{vmatrix} \end{array} \end{equation*}

练习 1.4.2 练习

1.

\(\begin{vmatrix} 3&1&0&-1\\2&1&1&0\\-1&3&1&2\\0&6&5&0 \end{vmatrix}\)中第\((1,2)\),第\((2,4)\)元素的余子式和代数余子式。
解答.
\(M_{12}=\begin{vmatrix} 2&1&0\\-1&1&2\\0&5&0 \end{vmatrix}=5\times (-1)^{3+2}\begin{vmatrix} 2&0\\-1&2 \end{vmatrix}=-20,A_{12}=(-1)^{1+2}M_{12}=20;\) \(M_{24}=\begin{vmatrix} 3&1&0\\-1&3&1\\0&6&5 \end{vmatrix}=32,A_{24}=(-1)^{2+4}M_{24}=32.\)

2.

按定义计算行列式:
  1. \(\begin{vmatrix} 0&1&0&\cdots&0\\ 0&0&2&\cdots&0\\ \vdots&\vdots&\vdots&&\vdots\\ 0&0&0&\cdots&n-1\\ n&0&0&\cdots&0 \end{vmatrix}\)
  2. \(\begin{vmatrix} 0&\cdots&0&1&0\\ 0&\cdots&2&0&0\\ \vdots&&\vdots&\vdots&\vdots\\ n-1&\cdots&0&0&0\\ 0&\cdots&0&0&n \end{vmatrix}\)
  3. \(\left|\begin{array}{cccccc} \alpha&\beta&0&\cdots&0&0\\ 0&\alpha&\beta&\cdots&0&0\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ 0&0&0&\cdots&\alpha&\beta\\ \beta&0&0&\cdots&0&\alpha \end{array}\right|\)
解答.
  1. 原式\(=(-1)^{n+1}n \begin{vmatrix} 1&0&\cdots&0\\0&2&\cdots&0\\\cdots&\cdots&\cdots&\cdots\\0&0&\cdots&n-1 \end{vmatrix}=(-1)^{n+1}n!\)
  2. \begin{equation*} \begin{array}{ccl}\mbox{原式}&=&(-1)^{n-2}(n-1)\begin{vmatrix} 0&\cdots&0&1&0\\ 0&\cdots&2&0&0\\ \vdots&&\vdots&\vdots&\vdots\\ n-2&\cdots&0&0&0\\ 0&\cdots&0&0&n \end{vmatrix}\\&=&(-1)^{n-2}(-1)^{n-3}(n-1)(n-2)\begin{vmatrix} 0&\cdots&0&1&0\\ 0&\cdots&2&0&0\\ \vdots&&\vdots&\vdots&\vdots\\ n-3&\cdots&0&0&0\\ 0&\cdots&0&0&n \end{vmatrix}\\&=&\cdots\cdots\\ &=&(-1)^{n-2}(-1)^{n-3}\cdots (-1)(n-1)(n-2)\cdots 2 \begin{vmatrix} 1&0\\0&n \end{vmatrix}\\&=&(-1)^{\frac{(n-2)(n-1)}{2}}n!\end{array} \end{equation*}
  3. \begin{equation*} \begin{array}{ccl}\mbox{原式}&=&\alpha\begin{vmatrix} \alpha&\beta&\cdots&0&0\\ 0&\alpha&\cdots&0&0\\ \vdots&\vdots&&\vdots&\vdots\\ 0&0&\cdots&\alpha&\beta\\ 0&0&\cdots&0&\alpha \end{vmatrix}_{n-1}+(-1)^{n+1}\beta \begin{vmatrix} \beta&0&\cdots&0&0\\ \alpha&\beta&\cdots&0&0\\ \vdots&\vdots&&\vdots&\vdots\\ 0&0&\cdots&\alpha&\beta\\ \end{vmatrix}_{n-1}\\&=&\alpha^n+(-1)^{n+1} \beta^n.\end{array} \end{equation*}

3.

\(n\)阶行列式\(\det A\)的值为\(c\)
  1. \(\det A\)的每个元素\(a_{ij}\)换成\((-1)^{i+j}a_{ij}\),得到的行列式的值是多少?
  2. \(\det A\)的每个元素\(a_{ij}\)换成\(2^{i-j}a_{ij}\),得到的行列式的值是多少?
  3. \(\det A\)的第1行移到最后一行,其余各行依次保持原来次序向上移动,得到的行列式的值是多少?
  4. \(\det A\)的第\(2\)列开始每列加上它前面的一列,同时将第\(1\)列加上\(\det A\)的第\(n\)列,得到的行列式的值是多少?
解答.
  1. 将第\(i\)行提取公因数\((-1)^i\),再第\(j\)列提取公因式\((-1)^j\),则
    \begin{equation*} \begin{array}{ccl} &&\begin{vmatrix} (-1)^{1+1}a_{11}&(-1)^{1+2}a_{12}&\cdots&(-1)^{1+n}a_{1n}\\ (-1)^{2+1}a_{21}&(-1)^{2+2}a_{22}&\cdots&(-1)^{2+n}a_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ (-1)^{n+1}a_{n1}&(-1)^{n+2}a_{n2}&\cdots&(-1)^{n+n}a_{nn} \end{vmatrix}\\ &=&(-1)^{1+2+\cdots +n}\begin{vmatrix} (-1)^{1}a_{11}&(-1)^{2}a_{12}&\cdots&(-1)^{n}a_{1n}\\ (-1)^{1}a_{21}&(-1)^{2}a_{22}&\cdots&(-1)^{n}a_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ (-1)^{1}a_{n1}&(-1)^{2}a_{n2}&\cdots&(-1)^{n}a_{nn} \end{vmatrix}\\ &=&(-1)^{1+2+\cdots +n}(-1)^{1+2+\cdots +n}\begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix}=c. \end{array} \end{equation*}
  2. 将第\(i\)行提取公因数\(2^i\),再第\(j\)列提取公因式\(2^{-j}\),则
    \begin{equation*} \begin{array}{ccl} &&\begin{vmatrix} 2^{1-1}a_{11}&2^{1-2}a_{12}&\cdots&2^{1-n}a_{1n}\\ 2^{2-1}a_{21}&2^{2-2}a_{22}&\cdots&2^{2-n}a_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ 2^{n-1}a_{n1}&2^{n-2}a_{n2}&\cdots&2)^{n-n}a_{nn} \end{vmatrix}\\ &=&2^{1+2+\cdots +n}\begin{vmatrix} 2^{-1}a_{11}&2^{-2}a_{12}&\cdots&2^{-n}a_{1n}\\ 2^{-1}a_{21}&2^{-2}a_{22}&\cdots&2^{-n}a_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ 2^{-1}a_{n1}&2^{-2}a_{n2}&\cdots&2^{-n}a_{nn} \end{vmatrix}\\ &=&2^{1+2+\cdots +n}2^{-1-2-\cdots -n}\begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix}=c. \end{array} \end{equation*}
  3. 将该行列式的第\(n\)行和第\(n-1\)行互换,再互换新的每\(n-1\)行和第\(n-2\)行,依此类推,直至互换新的第\(2\)行和第\(1\)行,得原行列式,这个互换共经历了\(n-1\)次。故得\(\det B=(-1)^{n-1}c\)
  4. \(A=(A_1,A_2,\cdots ,A_n)\),则
    \begin{equation*} \begin{array}{cl} &\left| A_1+A_n,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|\\ =&\left| A_1,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|+\left| A_n,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|. \end{array} \end{equation*}
    对于前一个行列式\(\left| A_1,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|\),从第一列开始,自左而右,依次将新的每一列乘以\(-1\)加到后一列,直到第\(n-1\)列,行列式不变,即\(\left| A_1,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|=\left| A_1,A_2,A_3,\cdots ,A_n\right|=c\)
    对于后一个行列式\(\left| A_n,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|\),先将第\(1\)列乘以\(-1\)加到最后一列,再将新的行列式从最后一列开始,自右而左,依次将新的每一列乘以\(-1\)加到前一列,直到第\(3\)列,行列式不变,即
    \begin{equation*} \left| A_n,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|=\left| A_n,A_1,A_2,\cdots ,A_{n-1}\right|. \end{equation*}
    于是由\((3)\)\(\ \left| A_1+A_n,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|=c+(-1)^{n-1}c\)

4.

\(X,Y,Z_2,Z_3,Z_4\)是4维列向量,\(A=(X,Z_2,Z_3,Z_4),\ B=(Y,Z_2,Z_3,Z_4)\)。已知\(\det A=5,\ \det B=2\),计算\(\det (A+B)\)
解答.
因为\(A+B=(X+Y,2Z_2,2Z_3,2Z_4)\),所以
\begin{equation*} \begin{array}{ccl}\det (A+B)&=&\left| X+Y,2Z_2,2Z_3,2Z_4\right|\\&=&2^3\left|X+Y,Z_2,Z_3,Z_4\right|\\&=&2^3\left(\left|X,Z_2,Z_3,Z_4\right|+\left|Y,Z_2,Z_3,Z_4\right|\right)\\&=&2^3(\det A+\det B)\\&=&56.\end{array} \end{equation*}

5.

证明:
  1. \(\begin{vmatrix} a_1-b_1&b_1-c_1&c_1-a_1\\ a_2-b_2&b_2-c_2&c_2-a_2\\ a_3-b_3&b_3-c_3&c_3-a_3 \end{vmatrix}=0\)
  2. \(\begin{vmatrix} a_1+b_1&b_1+c_1&c_1+a_1\\ a_2+b_2&b_2+c_2&c_2+a_2\\ a_3+b_3&b_3+c_3&c_3+a_3 \end{vmatrix}=2\begin{vmatrix} a_1&b_1&c_1\\ a_2&b_2&c_2\\ a_3&b_3&c_3 \end{vmatrix}\)
解答.
  1. 因为第1列加到第\(3\)列不改变行列式,所以
    \begin{equation*} \begin{vmatrix} a_1-b_1&b_1-c_1&c_1-a_1\\ a_2-b_2&b_2-c_2&c_2-a_2\\ a_3-b_3&b_3-c_3&c_3-a_3 \end{vmatrix}=\begin{vmatrix} a_1-b_1&b_1-c_1&c_1-b_1\\ a_2-b_2&b_2-c_2&c_2-b_2\\ a_3-b_3&b_3-c_3&c_3-b_3 \end{vmatrix} \end{equation*}
    注意到右式第\(2,3\)列成比例,而两列成比例的行列式等于零,故
    \begin{equation*} \begin{vmatrix} a_1-b_1&b_1-c_1&c_1-a_1\\ a_2-b_2&b_2-c_2&c_2-a_2\\ a_3-b_3&b_3-c_3&c_3-a_3 \end{vmatrix}=0. \end{equation*}
  2. \begin{equation*} \begin{array}{ccl} \begin{vmatrix} a_1+b_1&b_1+c_1&c_1+a_1\\ a_2+b_2&b_2+c_2&c_2+a_2\\ a_3+b_3&b_3+c_3&c_3+a_3 \end{vmatrix}&=&\begin{vmatrix} a_1&b_1+c_1&c_1+a_1\\ a_2&b_2+c_2&c_2+a_2\\ a_3&b_3+c_3&c_3+a_3 \end{vmatrix}+\begin{vmatrix} b_1&b_1+c_1&c_1+a_1\\ b_2&b_2+c_2&c_2+a_2\\ b_3&b_3+c_3&c_3+a_3 \end{vmatrix}\\ &=&\begin{vmatrix} a_1&b_1+c_1&c_1\\ a_2&b_2+c_2&c_2\\ a_3&b_3+c_3&c_3 \end{vmatrix}+\begin{vmatrix} b_1&c_1&c_1+a_1\\ b_2&c_2&c_2+a_2\\ b_3&c_3&c_3+a_3 \end{vmatrix}\\&=&\begin{vmatrix} a_1&b_1&c_1\\ a_2&b_2&c_2\\ a_3&b_3&c_3 \end{vmatrix}+\begin{vmatrix} b_1&c_1&a_1\\ b_2&c_2&a_2\\ b_3&c_3&a_3 \end{vmatrix}\\&=&2\begin{vmatrix} a_1&b_1&c_1\\ a_2&b_2&c_2\\ a_3&b_3&c_3 \end{vmatrix}. \end{array} \end{equation*}

6.

\(A\)\(m\)阶方阵,\(B\)\(n\)阶方阵,\(C\)\(m\times n\)矩阵。若\(\det \begin{pmatrix} A&C\\0&B \end{pmatrix}=d\),求\(\det \begin{pmatrix} 0&B\\A&C \end{pmatrix}\)
解答.
为了将\(\det \begin{pmatrix} A&C\\0&B \end{pmatrix}\)的第\(m+1\)行移到第\(1\)行,前\(m\)行依次保持原来次序向下移动一行,我们先将该行列式的第\(m+1\)行和第\(m\)行互换,再将新的第\(m\)行和第\(m-1\)行互换,依此类推,直至互换新的第\(2\)行和第\(1\)行,这个互换共经历了\(m\)次。
类似地,对于最后\(n\)行,每一行经历\(m\)次互换,一共经历了\(mn\)次互换可得\(\det \begin{pmatrix} 0&B\\A&C \end{pmatrix}\),因此
\begin{equation*} \det \begin{pmatrix} 0&B\\A&C \end{pmatrix}=(-1)^{mn}\det \begin{pmatrix} A&C\\0&B \end{pmatrix}=(-1)^{mn}d. \end{equation*}

7.

计算行列式:
  1. \(\left|\begin{array}{cccc} 1&0&-1&2\\ 1&2&2&1\\ 3&4&2&5\\ 4&2&2&11 \end{array}\right| \)
  2. \(\begin{vmatrix} 2&1&2&2\\-1&3&6&3\\2&6&-6&3\\-2&2&0&1 \end{vmatrix}\)
  3. \(\begin{vmatrix} 1&2&3&4\\ 2&3&4&1\\ 3&4&1&2\\ 4&1&2&3 \end{vmatrix}\)
  4. \(\begin{vmatrix} x_1-m&x_2&\cdots&x_n\\ x_1&x_2-m&\cdots&x_n\\ \vdots&\vdots&&\vdots\\ x_1&x_2&\cdots&x_n-m \end{vmatrix}\)
  5. \(\begin{vmatrix} a_1-b_1&a_1-b_2&\cdots&a_1-b_n\\ a_2-b_1&a_2-b_2&\cdots&a_2-b_n\\ \vdots&\vdots&&\vdots\\ a_n-b_1&a_n-b_2&\cdots&a_n-b_n\\ \end{vmatrix}\)
  6. \(\begin{vmatrix} a_1&a_2&a_3&\cdots&a_{n-1}&a_n\\ 1&-1&0&\cdots&0&0\\ 0&2&-2&\cdots&0&0\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ 0&0&0&\cdots&n-1&1-n \end{vmatrix}\)
解答.
  1. \(2\)行乘以\(-2\)加到第\(3\)行,第\(2\)行乘以\(-1\)加到第\(4\)行,得到
    \begin{equation*} \mbox{原式}=\begin{vmatrix} 1&0&-1&2\\ 1&2&2&1\\ 1&0&-2&3\\ 3&0&0&10 \end{vmatrix} \end{equation*}
    按第\(2\)列展开,得
    \begin{equation*} \mbox{原式}=2\begin{vmatrix} 1&-1&2\\ 1&-2&3\\ 3&0&10 \end{vmatrix}=2\begin{vmatrix} 1&-1&2\\ -1&0&-1\\ 3&0&10 \end{vmatrix}=2 \begin{vmatrix} -1&-1\\3&10 \end{vmatrix}=-14. \end{equation*}
  2. 将第\(4\)列乘以\(2\)加到第\(1\)列,第\(4\)列乘以\(-2\)加到第\(2\)列,得到
    \begin{equation*} \mbox{原式}=\begin{vmatrix} 6&-3&2&2\\ 5&-3&6&3\\ 8&0&-6&3\\ 0&0&0&1 \end{vmatrix}, \end{equation*}
    按第\(4\)行展开,
    \begin{equation*} \mbox{原式}=\begin{vmatrix} 6&-3&2\\ 5&-3&6\\ 8&0&-6 \end{vmatrix}=-3 \begin{vmatrix} 6&2\\8&-6 \end{vmatrix}=-78. \end{equation*}
  3. 将第\(2,3,4\)都加到第\(1\)行,再将新的第\(1\)行提出公因数\(10\),得
    \begin{equation*} \begin{array}{ccccl}\mbox{原式}&=&10\begin{vmatrix} 1&1&1&1\\ 2&3&4&1\\ 3&4&1&2\\ 4&1&2&3 \end{vmatrix}&=&10\begin{vmatrix} 1&1&1&1\\ 0&1&2&-1\\ 0&1&-2&-1\\ 0&-3&-2&-1 \end{vmatrix}\\&=&10\begin{vmatrix} 1&1&1&1\\ 0&1&2&-1\\ 0&0&-4&0\\ 0&0&4&-4 \end{vmatrix} &=&10\begin{vmatrix} 1&1&1&1\\ 0&1&2&-1\\ 0&0&-4&0\\ 0&0&0&-4 \end{vmatrix}=160.\\\end{array} \end{equation*}
  4. 将第\(2,\cdots,n\)列都加到第\(1\)列,再将新的第\(1\)列提出公因数\(\sum\limits_{i=1}^n x_i-m\)
    \begin{equation*} \mbox{原式}=(\sum\limits_{i=1}^n x_i-m)\cdot\begin{vmatrix} 1&x_2&\cdots&x_n\\ 1&x_2-m&\cdots&x_n\\ \vdots&\vdots&&\vdots\\ 1&x_2&\cdots&x_n-m \end{vmatrix}, \end{equation*}
    将第\(1\)列乘以\(-x_i\)加到第\(i\)列(\(2\leq i\leq n\)),得
    \begin{equation*} \mbox{原式}=(\sum\limits_{i=1}^n x_i-m)\cdot\begin{vmatrix} 1&0&\cdots&0\\ 1&-m&\cdots&0\\ \vdots&\vdots&&\vdots\\ 1&0&\cdots&-m \end{vmatrix}=(\sum\limits_{i=1}^n x_i-m)\cdot (-m)^{n-1}. \end{equation*}
    • \(n=1\)时,原式\(=a_1-b_1\)
    • \(n=2\)时,原式\(=\begin{vmatrix} a_1-b_1&a_1-b_2\\ a_2-b_1&a_2-b_2 \end{vmatrix}=(a_1-a_2)(b_1-b_2)\)
    • \(n\geq 3\)时,将第\(1\)列乘以\(-1\)加到后面每一列,得
      \begin{equation*} \mbox{原式}=\begin{vmatrix} a_1-b_1&b_1-b_2&\cdots&b_1-b_n\\ a_2-b_1&b_1-b_2&\cdots&b_1-b_n\\ \vdots&\vdots&&\vdots\\ a_n-b_1&b_1-b_2&\cdots&b_1-b_n\\ \end{vmatrix}, \end{equation*}
      注意到新的行列式第\(2\)列与第\(n\)列成比例,故原式\(=0\)
  5. 从第\(n\)列起,自右而左,依次将每一列加到前一列,直到第\(2\)列为止,得
    \begin{equation*} \begin{array}{ccl} \mbox{原式}&=&\begin{vmatrix} a_1+\cdots+a_n&a_2+\cdots+a_n&a_3+\cdots+a_n&\cdots&a_{n-1}+a_n&a_n\\ 0&-1&0&\cdots&0&0\\ 0&0&-2&\cdots&0&0\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ 0&0&0&\cdots&2-n&0\\ 0&0&0&\cdots&0&1-n \end{vmatrix}\\ &=&(-1)^{n-1}\cdot (\sum\limits_{i=1}^n a_i)\cdot (n-1)! \end{array} \end{equation*}

8.

计算下述行列式,并将结果因式分解:
\begin{equation*} \begin{vmatrix} \lambda-2&-2&2\\-2&\lambda-5&4\\2&4&\lambda-5 \end{vmatrix}. \end{equation*}
解答.
将第\(2\)列加到第\(3\)列,再将新的行列式的第\(3\)行乘以\(-1\)加到第\(2\)行,
\begin{equation*} \mbox{原式}=\begin{vmatrix} \lambda-2&-2&0\\-2&\lambda-5&\lambda-1\\2&4&\lambda-1 \end{vmatrix}=\begin{vmatrix} \lambda-2&-2&0\\-4&\lambda-9&0\\2&4&\lambda-1 \end{vmatrix}, \end{equation*}
按第\(3\)列展开,得
\begin{equation*} \mbox{原式}=(\lambda-1) \begin{vmatrix} \lambda-2&-2\\-4&\lambda-9 \end{vmatrix}=(\lambda-1)(\lambda^2-11 \lambda+10)=(\lambda-1)^2(\lambda-10). \end{equation*}

9.

计算\(n\)阶行列式\(\begin{vmatrix} a_1^{n-1}&a_1^{n-2}b_1&a_1^{n-3}b_1^2&\cdots&a_1b_1^{n-2}&b_1^{n-1}\\ a_2^{n-1}&a_2^{n-2}b_2&a_2^{n-3}b_2^2&\cdots&a_2b_2^{n-2}&b_2^{n-1}\\ a_3^{n-1}&a_3^{n-2}b_3&a_3^{n-3}b_3^2&\cdots&a_3b_3^{n-2}&b_3^{n-1}\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ a_n^{n-1}&a_n^{n-2}b_n&a_n^{n-3}b_n^2&\cdots&a_nb_n^{n-2}&b_n^{n-1} \end{vmatrix}\),其中\(a_1a_2\cdots a_{n}\neq 0\)
解答.
因为\(a_1a_2\cdots a_{n}\neq 0\),所以将第\(i\)行提出\(a_i^{n-1}\)\(1\leq i\leq n\)),得
\begin{equation*} \begin{array}{ccl} \mbox{原式}&=&\prod\limits_{i=1}^n a_i^{n-1}\cdot\begin{vmatrix} 1&\frac{b_1}{a_1}&\left(\frac{b_1}{a_1}\right)^2&\cdots&\left(\frac{b_1}{a_1}\right)^{n-1}\\ 1&\frac{b_2}{a_2}&\left(\frac{b_2}{a_2}\right)^2&\cdots&\left(\frac{b_2}{a_2}\right)^{n-1}\\ \vdots&\vdots&\vdots&&\vdots\\ 1&\frac{b_n}{a_n}&\left(\frac{b_n}{a_n}\right)^2&\cdots&\left(\frac{b_n}{a_n}\right)^{n-1} \end{vmatrix}=\prod\limits_{i=1}^n a_i^{n-1}\cdot\prod\limits_{1\leq j<i\leq n}\left(\frac{b_i}{a_i}-\frac{b_j}{a_j}\right)\\ &=&\prod\limits_{1\leq j<i\leq n} (a_jb_i-a_ib_j). \end{array} \end{equation*}

10.

\(\det A=\begin{vmatrix} -1 & -1 & 1 & -1\\ 4 & 2 & 0 & 0\\ 3 & 0 & 1 & 0\\ 5 & 0 & 0 & 4 \\ \end{vmatrix}\),求
  1. \(A_{11}+A_{12}+A_{13}+A_{14}\)
  2. \(M_{11}+2M_{21}+3M_{31}+4M_{41}\)
解答.
  1. \begin{equation*} A_{11}+A_{12}+A_{13}+A_{14}=\begin{vmatrix} 1 & 1 & 1 & 1\\ 4 & 2 & 0 & 0\\ 3 & 0 & 1 & 0\\ 5 & 0 & 0 & 4 \end{vmatrix}=\begin{vmatrix} -\frac{21}{4} & 1 & 1 & 1\\ 0 & 2 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 4 \end{vmatrix}=-42. \end{equation*}
  2. 因为
    \begin{equation*} M_{11}+2M_{21}+3M_{31}+4M_{41}=A_{11}-2A_{21}+3A_{31}-4A_{41}, \end{equation*}
    所以
    \begin{equation*} M_{11}+2M_{21}+3M_{31}+4M_{41}=\begin{vmatrix} 1 & -1 & 1 & -1\\ -2 & 2 & 0 & 0\\ 3 & 0 & 1 & 0\\ -4 & 0 & 0 & 4 \\ \end{vmatrix}=\begin{vmatrix} -4 & -1 & 1 & -1\\ 0 & 2 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 4 \\ \end{vmatrix}=-32. \end{equation*}

11.

\begin{equation*} D_n=\begin{vmatrix} \cos\alpha&1&&&&&\\ 1&2\cos\alpha&1&&&&\\ &1&2\cos\alpha&\ddots&&&\\ &&\ddots&\ddots&\ddots&&\\ &&&\ddots&2\cos\alpha&1&\\ &&&&1&2\cos\alpha&1\\ &&&&&1&2\cos\alpha \end{vmatrix}_n, \end{equation*}
证明:\(D_n=\cos n \alpha\)
解答.
  • \(n=1\)时,\(D_n=\cos\alpha\),结论成立。
  • \(n=2\)时,\(D_n=\begin{vmatrix} \cos\alpha&1\\1&2\cos\alpha \end{vmatrix}=2\cos^2 \alpha-1=\cos 2 \alpha\),结论成立。
  • 假设当\(k\leq n-1\)时,\(D_{k}=\cos k\alpha\)。对于\(n\)阶行列式\(D_n\),按最后一行展开,有
    \begin{equation*} D_n=2\cos\alpha D_{n-1}-\begin{vmatrix} \cos\alpha&1&&&&&\\ 1&2\cos\alpha&1&&&&\\ &1&2\cos\alpha&\ddots&&&\\ &&\ddots&\ddots&\ddots&&\\ &&&\ddots&2\cos\alpha&1&\\ &&&&1&2\cos\alpha&\\ &&&&&1&1 \end{vmatrix}_{n-1}, \end{equation*}
    后面一个行列式按最后一列展开,得
    \begin{equation*} D_n=2\cos\alpha D_{n-1}-D_{n-2}, \end{equation*}
    由归纳假设\(D_{n-1}=\cos (n-1)\alpha,\ D_{n-2}=\cos (n-2) \alpha\),代入得
    \begin{equation*} D_n=2\cos\alpha\cos (n-1)\alpha-\cos (n-2) \alpha=\cos n \alpha. \end{equation*}

12.

\(n\geq 2\),计算\(n\)阶行列式\(D_n=\begin{vmatrix} a_1&x&\cdots&x\\ x&a_2&\cdots&x\\ \vdots&\vdots&&\vdots\\ x&x&\cdots&a_n \end{vmatrix}\),其中\(x\neq a_i,\ i=1,2,\cdots ,n\)
解答.
因为
\begin{equation*} D_n=\begin{vmatrix} a_1&x&\cdots&x&x\\ x&a_2&\cdots&x&x\\ \vdots&\vdots&&\vdots&\vdots\\ x&x&\cdots&a_{n-1}&x\\ x&x&\cdots&x&x \end{vmatrix}+\begin{vmatrix} a_1&x&\cdots&x&0\\ x&a_2&\cdots&x&0\\ \vdots&\vdots&&\vdots&\vdots\\ x&x&\cdots&a_{n-1}&0\\ x&x&\cdots&x&a_n-x \end{vmatrix}, \end{equation*}
所以
\begin{equation*} D_n=\begin{vmatrix} a_1-x&0&\cdots&0&x\\ 0&a_2-x&\cdots&0&x\\ \vdots&\vdots&&\vdots&\vdots\\ 0&0&\cdots&a_{n-1}-x&x\\ 0&0&\cdots&0&x \end{vmatrix}+(a_n-x)D_{n-1}, \end{equation*}
\(D_n=x\cdot\prod\limits_{i=1}^{n-1}(a_i-x)+(a_n-x)D_{n-1}\)。依此类推,
\begin{equation*} \begin{array}{ccl} D_n&=&x\cdot\prod\limits_{i=1}^{n-1}(a_i-x)+(a_n-x)\left[ x\cdot\prod\limits_{i=1}^{n-2}(a_i-x)+(a_{n-1}-x)D_{n-2}\right]\\ &=&x\cdot\frac{\prod\limits_{i=1}^n (a_i-x)}{a_n-x}+x\cdot\frac{\prod\limits_{i=1}^n (a_i-x)}{a_{n-1}-x}+(a_n-x)(a_{n-1}-x)D_{n-2}\\ &=&\cdots\cdots\cdots\\ &=&x\cdot\frac{\prod\limits_{i=1}^n (a_i-x)}{a_n-x}+x\cdot\frac{\prod\limits_{i=1}^n (a_i-x)}{a_{n-1}-x}+\cdots+x\cdot\frac{\prod\limits_{i=1}^n (a_i-x)}{a_{2}-x}+\prod\limits_{i=2}^n(a_i-x)D_{1}. \end{array} \end{equation*}
\(D_1=a_1\)可知
\begin{equation*} D_n=x\cdot\sum\limits_{j=2}^n\frac{\prod\limits_{i=1}^n (a_i-x)}{a_j-x}+a_1\cdot\prod\limits_{i=2}^n(a_i-x). \end{equation*}

13.

计算\(n\)阶行列式
\begin{equation*} D_n= \begin{vmatrix} x&y&y&\cdots&y&y\\ z&x&y&\cdots&y&y\\ z&z&x&\cdots&y&y\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ z&z&z&\cdots&x&y\\ z&z&z&\cdots&z&x \end{vmatrix}, \end{equation*}
其中\(y\neq z\)
解答.
\begin{equation} \begin{array}{ccl} D_n&=&\begin{vmatrix} x&y&y&\cdots&y&y\\ z&x&y&\cdots&y&y\\ z&z&x&\cdots&y&y\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ z&z&z&\cdots&x&y\\ z&z&z&\cdots&z&y \end{vmatrix}+\begin{vmatrix} x&y&y&\cdots&y&0\\ z&x&y&\cdots&y&0\\ z&z&x&\cdots&y&0\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ z&z&z&\cdots&x&0\\ z&z&z&\cdots&z&x-y \end{vmatrix}\\ &=&y\begin{vmatrix} x-z&y-z&y-z&\cdots&y-z&1\\ 0&x-z&y-z&\cdots&y-z&1\\ 0&0&x-z&\cdots&y-z&1\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ 0&0&0&\cdots&x-z&1\\ 0&0&0&\cdots&0&1 \end{vmatrix}+(x-y)D_{n-1}\\ &=&y(x-z)^{n-1}+(x-y)D_{n-1}, \end{array}\tag{1.2} \end{equation}
同理,
\begin{equation} D_n=z(x-y)^{n-1}+(x-z)D_{n-1}.\tag{1.3} \end{equation}
(1.2)\(\times (x-z)-\)(1.3) \(\times (x-y)\)
\begin{equation*} D_n=\frac{y(x-z)^{n}-z(x-y)^n}{y-z}. \end{equation*}