子节 1.4.1 主要知识点
用消元法解线性方程组:
\begin{equation}
\left\{\begin{array}{rcl}
a_{11}x_1+a_{12}x_2 & = & b_1, \\
a_{21}x_1+a_{22}x_2 & = & b_2
\end{array}\right.\tag{1.1}
\end{equation}
得:
\begin{equation*}
({a_{11}a_{22}-a_{12}a_{21}})x_1=b_1a_{22}-b_2a_{12};\quad ({a_{11}a_{22}-a_{12}a_{21}})x_2=a_{11}b_2-b_1a_{21};
\end{equation*}
当\(a_{11}a_{22}-a_{12}a_{21}\ne0\) 时,原方程有唯一解:
\begin{equation*}
x_1=\frac{b_1a_{22}-b_2a_{12}}{{\color{red}a_{11}a_{22}-a_{12}a_{21}}},\quad x_2=\frac{a_{11}b_2-b_1a_{21}}{{\color{red}a_{11}a_{22}-a_{12}a_{21}}}
\end{equation*}
可见\(a_{11}a_{22}-a_{12}a_{21}\) 有特殊重要意义。
定义 1.4.4 . 二阶行列式.
设\(A=\begin{pmatrix}
a_{11} & a_{12}\\
a_{21} & a_{22}
\end{pmatrix}\) ,称\({\color{red}a_{11}a_{22}}{\color{blue}-a_{12}a_{21}}\) 为矩阵\(A\) 的行列式,记作
\begin{equation*}
{\color{red}\det A}\quad \text{或}\quad {\color{red}\begin{vmatrix}
a_{11} & a_{12}\\
a_{21} & a_{22}
\end{vmatrix}}
\end{equation*}
二阶行列式的计算有一种便于记忆的『图示』法则:
图 1.4.5. 二阶行列式的计算
当
\(\det A\ne0\) 时,方程组
(1.1) 有唯一解:
\begin{align*}
x_1 & = & \frac{b_1a_{22}-b_2a_{12}}{{a_{11}a_{22}-a_{12}a_{21}}} \\
& = & \frac{\begin{vmatrix}
{\color{red}b_{1}} & a_{12}\\
{\color{red}b_{2}} & a_{22}\\
\end{vmatrix}}{\begin{vmatrix}
a_{11} & a_{12}\\
a_{21} & a_{22}\\
\end{vmatrix}} \\
x_2 & = & \frac{a_{11}b_2-b_1a_{21}}{{a_{11}a_{22}-a_{12}a_{21}}}\\
& = & \frac{\begin{vmatrix}
a_{11} & {\color{red}b_{1}}\\
a_{21} & {\color{red}b_{2}}\\
\end{vmatrix}}{\begin{vmatrix}
a_{11} & a_{12}\\
a_{21} & a_{22}\\
\end{vmatrix}}
\end{align*}
定义 1.4.6 . 三阶行列式.
设 \(A= \begin{pmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}
\end{pmatrix}\) ,定义
\begin{align*}
\end{align*}
可以验证线性方程组
\begin{equation*}
\begin{pmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}
\end{pmatrix}\begin{pmatrix}
x_1\\x_2\\x_3
\end{pmatrix}=\begin{pmatrix}
b_1\\b_2\\b_3
\end{pmatrix}
\end{equation*}
的解为
\begin{equation*}
x_1=\frac{\begin{vmatrix}
{\color{red}b_{1}} & a_{12} & a_{13}\\
{\color{red}b_{2}} & a_{22} & a_{23}\\
{\color{red}b_{3}} & a_{32} & a_{33}
\end{vmatrix}}{\begin{vmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}
\end{vmatrix}},x_2=\frac{\begin{vmatrix}
a_{11} & {\color{red}b_{1}} & a_{13}\\
a_{21} & {\color{red}b_{2}} & a_{23}\\
a_{31} & {\color{red}b_{3}} & a_{33}
\end{vmatrix}}{\begin{vmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}
\end{vmatrix}},x_3=\frac{\begin{vmatrix}
a_{11} & a_{12} & {\color{red}b_{1}}\\
a_{21} & a_{22} & {\color{red}b_{2}}\\
a_{31} & a_{32} & {\color{red}b_{3}}
\end{vmatrix}}{\begin{vmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}
\end{vmatrix}}
\end{equation*}
对于一般的线性方程组
\begin{equation*}
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & a_{22} & \ddots & \vdots\\
\vdots & \ddots & \ddots & a_{n-1,n}\\
a_{n1} & \cdots&a_{n,n-1} & a_{nn}
\end{pmatrix}\begin{pmatrix}
x_1 \\ x_2\\ \vdots \\x_n
\end{pmatrix}=\begin{pmatrix}
b_1 \\ b_2\\ \vdots \\b_n
\end{pmatrix}
\end{equation*}
是否有类似的结论?
定义 1.4.7 . 行列式 的递归定义.
一阶矩阵\(A=(a_{11})\) 的 行列式,记为\(\blue{\det A}\) 或\(\blue{|A|}\) ,定义为
\begin{equation*}
\det A = a_{11}.
\end{equation*}
\(n(n>1)\) 阶矩阵 \(A=(a_{ij})_{n\times n}\) 的 行列式 ,记作
\begin{equation*}
\det A = \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & a_{22} & \ddots & \vdots\\
\vdots & \ddots & \ddots & a_{n-1,n}\\
a_{n1} & \cdots&a_{n,n-1} & a_{nn}
\end{vmatrix}
\end{equation*}
定义为
\begin{equation*}
\det A = \sum_{j=1}^n (-1)^{j+1} a_{j1}\cdot
\begin{vmatrix}
a_{12} & a_{13} & \cdots & a_{1n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{j-1,2} & a_{j-1,3} & \cdots & a_{j-1,n}\\
a_{j+1,2} & a_{j+1,3} & \cdots & a_{j+1,n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{n2} & a_{n3} & \cdots & a_{nn}
\end{vmatrix}.
\end{equation*}
记 \(\begin{vmatrix}
a_{11} & \cdots & a_{1,j-1} & a_{1,j+1} &\cdots & a_{1n}\\
\vdots & \ddots & \vdots & \vdots &\ddots & \vdots\\
a_{i-1,1} &\cdots & a_{i-1,j-1} & a_{i-1,j+1} &\cdots & a_{i-1,n}\\
a_{i+1,1} &\cdots & a_{i+1,j-1} & a_{i+1,j+1} &\cdots & a_{i+1,n}\\
\vdots & \ddots & \vdots & \vdots &\ddots & \vdots\\
a_{n2} & a_{n3} & \cdots & a_{nn}
\end{vmatrix}\triangleq M_{ij}\) , \((-1)^{i+j}M_{ij}\triangleq A_{ij} \) 。称 \(M_{ij}\) 为元素 \(a_{ij}\) 的余子式,\(A_{ij}\) 为元素 \(a_{ij}\) 的代数余子式。则行列式的定义也可改写为:
定义 1.4.8 .
设\(A=(a_{ij})_{n\times n}\) ,则
当\(n=1\) 时,\(\det A = a_{11}\) ;
当\(n>1\) 时,
\begin{align*}
\det A & = & a_{11}M_{11}{\color{red}-}a_{21}M_{21}+\cdots+{\color{red}(-1)^{n+1}}a_{n1}M_{n1} \\
& = & a_{11}A_{11}+a_{21}A_{21}+\cdots+a_{n1}A_{n1} \\
& = & \sum_{i=1}^n (-1)^{{\color{red}i+1}} a_{i1} M_{i1} =\sum_{i=1}^na_{i1}A_{i1}
\end{align*}
三阶行列式可用下面图示方法进行计算。4阶及4阶以上行列式不遵循此规则!
图 1.4.9. 三阶行列式计算
\begin{align*}
& = & {a_{11}\begin{vmatrix}
a_{22} & a_{23}\\
a_{32} & a_{33}
\end{vmatrix}}{{\color{red}-}a_{21}\begin{vmatrix}
a_{12} & a_{13}\\
a_{32} & a_{33}
\end{vmatrix}} {+a_{31}\begin{vmatrix}
a_{12} & a_{13}\\
a_{22} & a_{23}
\end{vmatrix}} \\
& = &\alert {a_{11}a_{22}a_{33} + a_{13}a_{21}a_{32}+ a_{12}a_{23}a_{31}} \\
& & {\color{blue}-a_{11}a_{32}a_{23}-a_{12}a_{21}a_{33}- a_{13}a_{22}a_{31} }
\end{align*}
定理 1.4.10 .
\begin{equation*}
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n}\\
{\color{red}0} & a_{22} & \ddots & \vdots\\
{\color{red}\vdots} & {\color{red}\ddots} & \ddots & a_{n-1,n}\\
{\color{red}0} & {\color{red}\cdots}&{\color{red}0} & a_{nn}
\end{vmatrix} ={\color{blue} a_{11}a_{22}\cdots a_{nn}}.
\end{equation*}
推论 1.4.11 .
\begin{equation*}
\begin{vmatrix}
a_{11} & {\color{red}0} & {\color{red}\cdots} & {\color{red}0}\\
{\color{red}0} & a_{22} & {\color{red}\ddots} & {\color{red}\vdots}\\
{\color{red}\vdots} & {\color{red}\ddots} & \ddots & {\color{red}0}\\
{\color{red}0} & {\color{red}\cdots}&{\color{red}0} & a_{nn}
\end{vmatrix} ={\color{blue} a_{11}a_{22}\cdots a_{nn}}.
\end{equation*}
例 1.4.12 .
\begin{equation*}
\begin{vmatrix}
& & & & a_{1,n}\\
& & & a_{2,n-1} & a_{2,n}\\
& &\iddots&\vdots &\vdots\\
& a_{n-1,2} & \cdots &a_{n-1,n-1} &a_{n-1,n}\\
a_{n,1} & a_{n,2} & \cdots & a_{n,n-1} & a_{n,n}
\end{vmatrix} =(-1)^{\frac{n(n-1)}{2}} a_{1,n}a_{2,n-1}\cdots a_{n,1}
\end{equation*}
归纳法(对行列式阶数)
验证结论对\(n = 1\) (或2)时成立;
归纳假设对任意满足命题条件的\(n-1\) 或小于\(n\) 阶行列式命题成立;
利用2的假设证明命题对\(n\) 阶行列式也成立。
定理 1.4.13 .
\begin{equation*}
\begin{vmatrix}
a_{11} & \cdots &{\color{blue} c} {\color{red}a_{1,j}} & \cdots & a_{1n}\\
\vdots & \vdots & {\color{red}\vdots} & \vdots & \vdots\\
{a_{i,1}} & {\cdots} &{\color{blue} c} {\color{red}a_{i,j}} & {\cdots} & {a_{i,n}}\\
\vdots & \vdots & {\color{red}\vdots} & \vdots & \vdots\\
a_{n,1} & \cdots & {\color{blue} c} {\color{red}a_{n,j}} & \cdots & a_{n,n}
\end{vmatrix}
= {\color{blue} c}
\begin{vmatrix}
a_{11} & \cdots & {\color{red}a_{1,j}} & \cdots & a_{1n}\\
\vdots & \vdots & {\color{red}\vdots} & \vdots & \vdots\\
{a_{i,1}} & {\cdots} & {\color{red}a_{i,j}} & {\cdots} & {a_{i,n}}\\
\vdots & \vdots & {\color{red}\vdots} & \vdots & \vdots\\
a_{n,1} & \cdots & {\color{red}a_{n,j}} & \cdots & a_{n,n}
\end{vmatrix}
\end{equation*}
思考:设\(A\) 是数域\(F\) 上的\(n\) 阶矩阵,\(c\in F\) ,则\(\det(cA)=c\det A\) ?
\begin{equation*}
{\color{red}\det (cA)=c^n\det A}.
\end{equation*}
推论 1.4.14 .
\begin{equation*}
\begin{vmatrix}
a_{11} & \cdots & a_{1,j-1}& {\color{red}0} & a_{1,j+1}&\cdots & a_{1n}\\
\vdots & \vdots &\vdots & {\color{red}\vdots} & \vdots &\vdots & \vdots\\
{a_{i,1}} & {\cdots} & a_{i,j-1}& {\color{red}0} & a_{i,j+1}& {\cdots} & {a_{i,n}}\\
\vdots & \vdots & \vdots & {\color{red}\vdots} & \vdots & \vdots & \vdots\\
a_{n,1} & \cdots & a_{n,j-1}& {\color{red}0} & a_{n,j+1} & \cdots & a_{n,n}
\end{vmatrix}={\color{blue}0}
\end{equation*}
行列式的性质2
\begin{equation*}
\begin{vmatrix}
a_{11} & \cdots &{\color{blue} a_{1,j}}+{\color{red}b_{1,j}} & \cdots & a_{1n}\\
\vdots & \vdots & {\color{red}\vdots} & \vdots & \vdots\\
{a_{i,1}} & {\cdots} &{\color{blue} a_{i,j}}+ {\color{red}b_{i,j}} & {\cdots} & {a_{i,n}}\\
\vdots & \vdots & {\color{red}\vdots} & \vdots & \vdots\\
a_{n,1} & \cdots & {\color{blue} a_{n,j}}+{\color{red}b_{n,j}} & \cdots & a_{n,n}
\end{vmatrix}
\end{equation*}
\begin{equation*}
= \begin{vmatrix}
a_{11} & \cdots &{\color{blue} a_{1,j}} & \cdots & a_{1n}\\
\vdots & \vdots & {\color{blue}\vdots} & \vdots & \vdots\\
{a_{i,1}} & {\cdots} &{\color{blue} a_{i,j}} & {\cdots} & {a_{i,n}}\\
\vdots & \vdots & {\color{blue} \vdots} & \vdots & \vdots\\
a_{n,1} & \cdots & {\color{blue} a_{n,j}} & \cdots & a_{n,n}
\end{vmatrix}+\begin{vmatrix}
a_{11} & \cdots &{\color{red}b_{1,j}} & \cdots & a_{1n}\\
\vdots & \vdots & {\color{red}\vdots} & \vdots & \vdots\\
{a_{i,1}} & {\cdots} & {\color{red}b_{i,j}} & {\cdots} & {a_{i,n}}\\
\vdots & \vdots & {\color{red}\vdots} & \vdots & \vdots\\
a_{n,1} & \cdots & {\color{red}b_{n,j}} & \cdots & a_{n,n}
\end{vmatrix}
\end{equation*}
注意:性质2中只能对某一列进行分拆,其它列保持不变。
\begin{equation*}
\begin{vmatrix}
a+b & c+d\\
e+f & g+h
\end{vmatrix}{\color{red}\ne} \begin{vmatrix}
a & c\\
e & g
\end{vmatrix}+\begin{vmatrix}
b & d\\
f & h
\end{vmatrix}
\end{equation*}
即一般情况下,给定\(n\) 阶矩阵\(A,B\) ,
\begin{equation*}
{\color{red}\det(A+B)\neq \det A+\det B}.
\end{equation*}
行列式性质3
定理 1.4.15 .
\begin{equation*}
\begin{vmatrix}
a_{1,1} &\cdots & {\color{red}a_{1,j}} & \cdots & {\color{blue}a_{1,r}}& \cdots& a_{1,n}\\
\vdots& \vdots & {\color{red}\vdots} & \vdots & {\color{blue}{\vdots}} & \vdots & \vdots \\
a_{i,1}& \cdots & {\color{red}a_{i,j}} & \cdots & {\color{blue}a_{i,r}} & \cdots & a_{i,n}\\
\vdots& \vdots & {\color{red}\vdots} & \vdots & {\color{blue}\vdots }& \vdots & \vdots \\
a_{n,1}& \cdots & {\color{red}a_{n,j}} & \cdots & {\color{blue}a_{n,r}} & \cdots & a_{n,n}
\end{vmatrix}
\end{equation*}
\begin{equation*}
={\color{orange}-}
\begin{vmatrix}
a_{1,1} &\cdots & {\color{blue}a_{1,r}} & \cdots &{\color{red}a_{1,j}}& \cdots& a_{1,n}\\
\vdots& \vdots & {\color{blue}\vdots} & \vdots & {\color{red}\vdots} & \vdots & \vdots \\
a_{i,1}& \cdots & {\color{blue}a_{i,r}} & \cdots & {\color{red}a_{i,j}}& \cdots & a_{i,n}\\
\vdots& \vdots & {\color{blue}\vdots} & \vdots & {\color{red}\vdots} & \vdots & \vdots \\
a_{n,1}& \cdots & {\color{blue}a_{n,r}} & \cdots & {\color{red}a_{n,j}} & \cdots & a_{n,n}
\end{vmatrix}
\end{equation*}
推论 1.4.16 .
\begin{equation*}
\begin{vmatrix}
a_{1,1} &\cdots & {\color{red}a_{1,j}} & \cdots & {\color{blue}a_{1,j}}& \cdots& a_{1,n}\\
\vdots& \vdots & {\color{red}\vdots} & \vdots & {\color{blue}{\vdots}} & \vdots & \vdots \\
a_{i,1}& \cdots & {\color{red}a_{i,j}} & \cdots & {\color{blue}a_{i,j}} & \cdots & a_{i,n}\\
\vdots& \vdots & {\color{red}\vdots} & \vdots & {\color{blue}\vdots }& \vdots & \vdots \\
a_{n,1}& \cdots & {\color{red}a_{n,j}} & \cdots & {\color{blue}a_{n,j}} & \cdots & a_{n,n}
\end{vmatrix}=0
\end{equation*}
推论 1.4.17 .
\begin{equation*}
\begin{vmatrix}
a_{1,1} &\cdots & {\color{red}ca_{1,j}} & \cdots & {\color{blue}a_{1,j}}& \cdots& a_{1,n}\\
\vdots& \vdots & {\color{red}\vdots} & \vdots & {\color{blue}{\vdots}} & \vdots & \vdots \\
a_{i,1}& \cdots & {\color{red}ca_{i,j}} & \cdots & {\color{blue}a_{i,j}} & \cdots & a_{i,n}\\
\vdots& \vdots & {\color{red}\vdots} & \vdots & {\color{blue}\vdots }& \vdots & \vdots \\
a_{n,1}& \cdots & {\color{red}ca_{n,j}} & \cdots & {\color{blue}a_{n,j}} & \cdots & a_{n,n}
\end{vmatrix}=0
\end{equation*}
行列式性质4
定理 1.4.18 .
[行列式按第\(r\) 列展开]
\begin{equation*}
\det A = a_{1r}A_{1r}+a_{2r}A_{2,r}+\cdots+a_{nr}A_{nr}.
\end{equation*}
\(\displaystyle A_{ij}=(-1)^{i+j} \begin{vmatrix}
a_{11} & \cdots & a_{1,j-1} & a_{1,j+1} & \cdots & a_{1n}\\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots\\
a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j+1} & \cdots & a_{i-1,n}\\
a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j+1} & \cdots & a_{i+1,n}\\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots\\
a_{n,1} & \cdots & a_{n,j-1} & a_{n,j+1} & \cdots & a_{n,n}
\end{vmatrix} \)
行列式性质5
定理 1.4.19 .
\begin{equation*}
\begin{vmatrix}
a_{1,1} &\cdots & {\color{red}a_{1,j}}+c {\color{blue}a_{1,r}} & \cdots & {\color{blue}a_{1,r}}& \cdots& a_{1,n}\\
\vdots& \vdots & {\color{red}\vdots} & \vdots & {\color{blue}{\vdots}} & \vdots & \vdots \\
a_{i,1}& \cdots & {\color{red}a_{i,j}} +c{\color{blue}a_{i,r}} & \cdots & {\color{blue}a_{i,r}} & \cdots & a_{i,n}\\
\vdots& \vdots & {\color{red}\vdots} & \vdots & {\color{blue}\vdots }& \vdots & \vdots \\
a_{n,1}& \cdots & {\color{red}a_{n,j}}+c{\color{blue}a_{n,r}} & \cdots & {\color{blue}a_{n,r}} & \cdots & a_{n,n}
\end{vmatrix}
\end{equation*}
\begin{equation*}
=\begin{vmatrix}
a_{1,1} &\cdots & {\color{red}a_{1,j}} & \cdots & {\color{blue}a_{1,r}}& \cdots& a_{1,n}\\
\vdots& \vdots & {\color{red}\vdots} & \vdots & {\color{blue}{\vdots}} & \vdots & \vdots \\
a_{i,1}& \cdots & {\color{red}a_{i,j}} & \cdots & {\color{blue}a_{i,r}} & \cdots & a_{i,n}\\
\vdots& \vdots & {\color{red}\vdots} & \vdots & {\color{blue}\vdots }& \vdots & \vdots \\
a_{n,1}& \cdots & {\color{red}a_{n,j}} & \cdots & {\color{blue}a_{n,r}} & \cdots & a_{n,n}
\end{vmatrix}
\end{equation*}
定理 1.4.20 .
\begin{equation*}
\begin{vmatrix}
{\color{red}a_{11}} & {\color{red}a_{12}} & {\color{red}\cdots} & {\color{red}a_{1n}}\\
{\color{blue}a_{21}} & {\color{blue}a_{22}} & {\color{blue}\cdots} & {\color{blue}a_{2n}}\\
{\color{orange}\vdots} & {\color{orange}{\vdots}} & {\color{orange}\ddots} & {\color{orange}\vdots}\\
{\color{green}a_{n1}} & {\color{green}a_{n2}} & {\color{green}\cdots} & {\color{green}a_{nn}}
\end{vmatrix}= \begin{vmatrix}
{\color{red}a_{11}} & {\color{blue}a_{21}} & {\color{orange}\cdots} & {\color{green}a_{n1}}\\
{\color{red}a_{12}} & {\color{blue}a_{22}} & {\color{orange}\cdots} & {\color{green}a_{n2}}\\
{\color{red}\vdots} & {\color{blue}{\vdots}} & {\color{orange}\ddots} & {\color{green}\vdots}\\
{\color{red}a_{1n}} & {\color{blue}a_{2n}} & {\color{orange}\cdots} & {\color{green}a_{nn}}
\end{vmatrix}
\end{equation*}
即
\begin{equation*}
\det A = \det A^T.
\end{equation*}
行列式按行展开
引理 1.4.21 .
\begin{equation*}
\begin{vmatrix}
{\color{red}0} & {\color{red}0} & {\color{red}\cdots} & {\color{red}0}\\
a_{21} & a_{22} &\cdots & a_{2n}\\
\vdots & \vdots &\ddots &\vdots\\
a_{n1} & a_{n2} &\cdots & a_{nn}
\end{vmatrix}={\color{red}0}
\end{equation*}
引理 1.4.22 .
\begin{equation*}
\det A = a_{11}A_{11}+a_{12}A_{12}+\cdots a_{1n}A_{1n}=\sum_{j=1}^n a_{1j}A_{1j}
\end{equation*}
\begin{align*}
& &\begin{vmatrix}
a_{11} & a_{12} &\cdots & a_{1n}\\
a_{21} & a_{22} &\cdots & a_{2n}\\
\vdots & \vdots &\ddots &\vdots\\
a_{n1} & a_{n2} &\cdots & a_{nn}
\end{vmatrix}
= \begin{vmatrix}
a_{11} & a_{12} &\cdots & a_{1n}\\
{\color{red}0} & a_{22} &\cdots & a_{2n}\\
{\color{red}\vdots} & \vdots &\ddots &\vdots\\
{\color{red}0} & a_{n2} &\cdots & a_{nn}
\end{vmatrix}+ \begin{vmatrix}
{\color{red}0} & a_{12} &\cdots & a_{1n}\\
a_{21} & a_{22} &\cdots & a_{2n}\\
\vdots & \vdots &\ddots &\vdots\\
a_{n1} & a_{n2} &\cdots & a_{nn}
\end{vmatrix} \\
& = & a_{11}A_{11}+\begin{vmatrix}
{\color{red}0} & a_{12} &\cdots & a_{1n}\\
a_{21} & {\color{red}0} &\cdots & a_{2n}\\
\vdots & {\color{red}\vdots} &\ddots &\vdots\\
a_{n1} & {\color{red}0} &\cdots & a_{nn}
\end{vmatrix}+\begin{vmatrix}
{\color{red}0} & {\color{red}0} &\cdots & a_{1n}\\
a_{21} & a_{22} &\cdots & a_{2n}\\
\vdots & \vdots &\ddots &\vdots\\
a_{n1} & a_{n2} &\cdots & a_{nn}
\end{vmatrix} \\
& = & a_{11}A_{11} +a_{12}A_{12}+\cdots+\begin{vmatrix}
{\color{red}0} & {\color{red}0} &{\color{red}\cdots} & a_{1n}\\
a_{21} & a_{22} &\cdots & {\color{red}0}\\
\vdots & \vdots &\ddots &{\color{red}\vdots}\\
a_{n1} & a_{n2} &\cdots & {\color{red}0}
\end{vmatrix}+\begin{vmatrix}
{\color{red}0} & {\color{red}0} &{\color{red}\cdots} & {\color{red}0}\\
a_{21} & a_{22} &\cdots & a_{2n}\\
\vdots & \vdots &\ddots &\vdots\\
a_{n1} & a_{n2} &\cdots & a_{nn}
\end{vmatrix}
\end{align*}
例 1.4.23 .
若\(n\) 阶矩阵\(A=(a_{ij})_{n\times n}\) 为反对称矩阵,即
\begin{equation*}
a_{ij}=-a_{ji},\quad i,j=1,2,\ldots,n.
\end{equation*}
证明:当\(n\) 为奇数时,\(\det A =0\) 。
定理 1.4.24 .
若将\(\det A\) 的某一行乘以常数c得到行列式\(\det B\) , 则\(\det A = c \det B\) 。
\(A,\ B,\ C\) 是三个\(n\) 阶方阵,若\(C\) 的第\(r\) 行元素是\(A\) 的第\(r\) 行元素和\(B\) 的第\(r\) 行元素的和, 即
\begin{equation*}
c_{ri}=a_{ri}+b_{ri},\quad i=1,\ 2,\ \ldots\ ,\ n,
\end{equation*}
而\(c_{ij}=a_{ij}=b_{ij}\) ,\(i\ne r,\ i,\ j=1,\ 2,\ \ldots\ ,\ n\) ,则
\begin{equation*}
\det C = \det A + \det B.
\end{equation*}
交换行列式的两行,行列式值改变符号。
推论’:若矩阵\(A\) 的两行相同,则\(\det A = 0\) 。
推论’: 若矩阵\(A\) 的两行成比例,则\(\det A = 0\) 。
将行列式的一行乘以常数\(c\) 加到另一行上,行列式值不变。
行列式的计算
三角化法:
降阶法:
例 1.4.25 .
\begin{equation*}
\begin{vmatrix}
1& 2 & -1 & 2\\
3& 0 & 1 & 5\\
1& -2 & 0 & 3\\
-2& -4 & 1 & 6
\end{vmatrix},\quad \begin{vmatrix}
30 & 0 & 150 & 120\\
1 & 2 & 5 & 6\\
2 & 0 & -3 & 0 \\
5 & 0 & 1 & 2
\end{vmatrix}
\end{equation*}
例 1.4.26 . 爪形行列式.
设\(a_i\ne 0,\ 1\le i\le n\) ,求行列式
\begin{equation*}
\begin{vmatrix}
a_0 & b_1 & \cdots & b_n \\
c_1& a_1 & & \\
\vdots & & \ddots & \\
c_n& & & a_n
\end{vmatrix}.
\end{equation*}
解答 .
\begin{equation*}
(a_0-\sum_{i=1}^n\frac{b_ic_i}{a_i})a_1a_2\cdots a_n.
\end{equation*}
例 1.4.27 . 多项式与行列式.
\begin{equation*}
\begin{vmatrix}
\lambda & & & & & a_n\\
-1& \lambda & & & & a_{n-1}\\
& -1 & \lambda & & & a_{n-2} \\
& &\ddots & \ddots & & \vdots\\
& & & -1 &\lambda & a_2 \\
& & & & -1 & \lambda+a_1\\
\end{vmatrix}
\end{equation*}
解答 .
\begin{equation*}
\lambda^n+a_1\lambda^{n-1}+a_2\lambda^{n-2}+\cdots+a_n.
\end{equation*}
例 1.4.28 .
\begin{equation*}
\begin{vmatrix}
x & a & \cdots & a\\
a & x & \ddots &\vdots\\
\vdots & \ddots &\ddots & a\\
a & \cdots & a & x
\end{vmatrix}
\end{equation*}
例 1.4.29 . Vander monde行列式 .
\begin{equation*}
V_n = \begin{vmatrix}
1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\
1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\
1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\
\vdots& \vdots & \vdots & \ddots & \vdots \\
1 & x_n & x_n^2 & \cdots & x_n^{n-1}
\end{vmatrix}
\end{equation*}
解答 .
\begin{equation*}
\prod_{1\le j< i\le n}(x_i-x_j)
\end{equation*}
证明.
\begin{align*}
& &
\begin{vmatrix}
1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\
1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\
1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\
\vdots& \vdots & \vdots & \ddots & \vdots \\
1 & x_n & x_n^2 & \cdots & x_n^{n-1}
\end{vmatrix}
\xrightarrow{c_n- x_n\cdot c_{n-1}}
\begin{vmatrix}
1 & x_1 & x_1^2 & \cdots & x_1^{n-2}(x_1-x_n) \\
1 & x_2 & x_2^2 & \cdots & x_2^{n-2}(x_2-x_n) \\
1 & x_3 & x_3^2 & \cdots & x_3^{n-2}(x_3-x_n) \\
\vdots& \vdots & \vdots & \ddots & \vdots \\
1 & x_n & x_n^2 & \cdots & 0
\end{vmatrix} \\
& & \xrightarrow{c_{n-1}-x_n\cdot c_{n-2},\cdots, c_2-x_n\cdot c_1}
\begin{vmatrix}
1 & x_1-x_n & x_1(x_1-x_n) & \cdots & x_1^{n-2}(x_1-x_n) \\
1 & x_2-x_n & x_2(x_2-x_n) & \cdots & x_2^{n-2}(x_2-x_n) \\
1 & x_3-x_n & x_3(x_3-x_n) & \cdots & x_3^{n-2}(x_3-x_n) \\
\vdots& \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & \cdots & 0 \\
\end{vmatrix} \\
& & = (-1)^{n+1}\prod_{j=1}^{n-1}(x_j-x_n)
\begin{vmatrix}
1 & x_1 & x_1^2 & \cdots & x_1^{n-2} \\
1 & x_2 & x_2^2 & \cdots & x_2^{n-2} \\
1 & x_3 & x_3^2 & \cdots & x_3^{n-2} \\
\vdots& \vdots & \vdots & \ddots & \vdots \\
1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-2}
\end{vmatrix}
= \prod_{j=1}^{n-1}(x_n-x_j) V_{n-1}
\end{align*}
例 1.4.30 .
比较下列行列式的第一列元素余子式
\begin{equation*}
\begin{vmatrix}
{a_{11}} & a_{12} & a_{13}\\
{a_{21}} & a_{22} & a_{23}\\
{a_{31}} & a_{32} & a_{33}
\end{vmatrix},\quad \begin{vmatrix}
u & a_{12} & a_{13}\\
v & a_{22} & a_{23}\\
w & a_{32} & a_{33}
\end{vmatrix}
\end{equation*}
行列式性质7(重要公式)
定理 1.4.31 .
\begin{equation*}
a_{k1}A_{i1}+a_{k2}A_{i2}+\cdots a_{kn}A_{in}=\begin{cases}
\det A, & k=i\\
0, & k\ne i
\end{cases}
\end{equation*}
\begin{equation*}
a_{1l}A_{1j}+a_{2l}A_{2j}+\cdots a_{nl}A_{nj}=\begin{cases}
\det A, &l=j\\
0, & l\ne j
\end{cases}
\end{equation*}
例 1.4.32 .
设
\begin{equation*}
\det A = \begin{vmatrix}
2 & 1 & 3 & -1\\
4 & 2 & 4 & -3\\
3 & 5 & 0 & 1\\
5 & 6 & 2 & 4 \\
\end{vmatrix},
\end{equation*}
求\(M_{11}+M_{12}+M_{13}+M_{14} \)
解答 .
\begin{equation*}
\begin{array}{rcl}
& & M_{11}+M_{12}+M_{13}+M_{14}\\
& = & \begin{vmatrix}
1 & -1 & 1 & -1\\
4 & 2 & 4 & -3\\
3 & 5 & 0 & 1\\
5 & 6 & 2 & 4 \\
\end{vmatrix}
\end{array}
\end{equation*}
练习 1.4.2 练习
1.
求\(\begin{vmatrix}
3&1&0&-1\\2&1&1&0\\-1&3&1&2\\0&6&5&0
\end{vmatrix}\) 中第\((1,2)\) ,第\((2,4)\) 元素的余子式和代数余子式。
解答 .
\(M_{12}=\begin{vmatrix}
2&1&0\\-1&1&2\\0&5&0
\end{vmatrix}=5\times (-1)^{3+2}\begin{vmatrix}
2&0\\-1&2
\end{vmatrix}=-20,A_{12}=(-1)^{1+2}M_{12}=20;\) \(M_{24}=\begin{vmatrix}
3&1&0\\-1&3&1\\0&6&5
\end{vmatrix}=32,A_{24}=(-1)^{2+4}M_{24}=32.\)
2.
按定义计算行列式:
\(\begin{vmatrix}
0&1&0&\cdots&0\\
0&0&2&\cdots&0\\
\vdots&\vdots&\vdots&&\vdots\\
0&0&0&\cdots&n-1\\
n&0&0&\cdots&0
\end{vmatrix}\) ;
\(\begin{vmatrix}
0&\cdots&0&1&0\\
0&\cdots&2&0&0\\
\vdots&&\vdots&\vdots&\vdots\\
n-1&\cdots&0&0&0\\
0&\cdots&0&0&n
\end{vmatrix}\) 。
\(\left|\begin{array}{cccccc}
\alpha&\beta&0&\cdots&0&0\\
0&\alpha&\beta&\cdots&0&0\\
\vdots&\vdots&\vdots&&\vdots&\vdots\\
0&0&0&\cdots&\alpha&\beta\\
\beta&0&0&\cdots&0&\alpha
\end{array}\right|\) 。
解答 .
原式\(=(-1)^{n+1}n \begin{vmatrix}
1&0&\cdots&0\\0&2&\cdots&0\\\cdots&\cdots&\cdots&\cdots\\0&0&\cdots&n-1
\end{vmatrix}=(-1)^{n+1}n!\)
\begin{equation*}
\begin{array}{ccl}\mbox{原式}&=&(-1)^{n-2}(n-1)\begin{vmatrix}
0&\cdots&0&1&0\\
0&\cdots&2&0&0\\
\vdots&&\vdots&\vdots&\vdots\\
n-2&\cdots&0&0&0\\
0&\cdots&0&0&n
\end{vmatrix}\\&=&(-1)^{n-2}(-1)^{n-3}(n-1)(n-2)\begin{vmatrix}
0&\cdots&0&1&0\\
0&\cdots&2&0&0\\
\vdots&&\vdots&\vdots&\vdots\\
n-3&\cdots&0&0&0\\
0&\cdots&0&0&n
\end{vmatrix}\\&=&\cdots\cdots\\
&=&(-1)^{n-2}(-1)^{n-3}\cdots (-1)(n-1)(n-2)\cdots 2 \begin{vmatrix}
1&0\\0&n
\end{vmatrix}\\&=&(-1)^{\frac{(n-2)(n-1)}{2}}n!\end{array}
\end{equation*}
\begin{equation*}
\begin{array}{ccl}\mbox{原式}&=&\alpha\begin{vmatrix}
\alpha&\beta&\cdots&0&0\\
0&\alpha&\cdots&0&0\\
\vdots&\vdots&&\vdots&\vdots\\
0&0&\cdots&\alpha&\beta\\
0&0&\cdots&0&\alpha
\end{vmatrix}_{n-1}+(-1)^{n+1}\beta \begin{vmatrix}
\beta&0&\cdots&0&0\\
\alpha&\beta&\cdots&0&0\\
\vdots&\vdots&&\vdots&\vdots\\
0&0&\cdots&\alpha&\beta\\
\end{vmatrix}_{n-1}\\&=&\alpha^n+(-1)^{n+1} \beta^n.\end{array}
\end{equation*}
3.
设\(n\) 阶行列式\(\det A\) 的值为\(c\) ,
将\(\det A\) 的每个元素\(a_{ij}\) 换成\((-1)^{i+j}a_{ij}\) ,得到的行列式的值是多少?
将\(\det A\) 的每个元素\(a_{ij}\) 换成\(2^{i-j}a_{ij}\) ,得到的行列式的值是多少?
将\(\det A\) 的第1行移到最后一行,其余各行依次保持原来次序向上移动,得到的行列式的值是多少?
从\(\det A\) 的第\(2\) 列开始每列加上它前面的一列,同时将第\(1\) 列加上\(\det A\) 的第\(n\) 列,得到的行列式的值是多少?
解答 .
将第\(i\) 行提取公因数\((-1)^i\) ,再第\(j\) 列提取公因式\((-1)^j\) ,则
\begin{equation*}
\begin{array}{ccl}
&&\begin{vmatrix}
(-1)^{1+1}a_{11}&(-1)^{1+2}a_{12}&\cdots&(-1)^{1+n}a_{1n}\\
(-1)^{2+1}a_{21}&(-1)^{2+2}a_{22}&\cdots&(-1)^{2+n}a_{2n}\\
\cdots&\cdots&\cdots&\cdots\\
(-1)^{n+1}a_{n1}&(-1)^{n+2}a_{n2}&\cdots&(-1)^{n+n}a_{nn}
\end{vmatrix}\\
&=&(-1)^{1+2+\cdots +n}\begin{vmatrix}
(-1)^{1}a_{11}&(-1)^{2}a_{12}&\cdots&(-1)^{n}a_{1n}\\
(-1)^{1}a_{21}&(-1)^{2}a_{22}&\cdots&(-1)^{n}a_{2n}\\
\cdots&\cdots&\cdots&\cdots\\
(-1)^{1}a_{n1}&(-1)^{2}a_{n2}&\cdots&(-1)^{n}a_{nn}
\end{vmatrix}\\
&=&(-1)^{1+2+\cdots +n}(-1)^{1+2+\cdots +n}\begin{vmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
a_{21}&a_{22}&\cdots&a_{2n}\\
\cdots&\cdots&\cdots&\cdots\\
a_{n1}&a_{n2}&\cdots&a_{nn}
\end{vmatrix}=c.
\end{array}
\end{equation*}
将第\(i\) 行提取公因数\(2^i\) ,再第\(j\) 列提取公因式\(2^{-j}\) ,则
\begin{equation*}
\begin{array}{ccl}
&&\begin{vmatrix}
2^{1-1}a_{11}&2^{1-2}a_{12}&\cdots&2^{1-n}a_{1n}\\
2^{2-1}a_{21}&2^{2-2}a_{22}&\cdots&2^{2-n}a_{2n}\\
\cdots&\cdots&\cdots&\cdots\\
2^{n-1}a_{n1}&2^{n-2}a_{n2}&\cdots&2)^{n-n}a_{nn}
\end{vmatrix}\\
&=&2^{1+2+\cdots +n}\begin{vmatrix}
2^{-1}a_{11}&2^{-2}a_{12}&\cdots&2^{-n}a_{1n}\\
2^{-1}a_{21}&2^{-2}a_{22}&\cdots&2^{-n}a_{2n}\\
\cdots&\cdots&\cdots&\cdots\\
2^{-1}a_{n1}&2^{-2}a_{n2}&\cdots&2^{-n}a_{nn}
\end{vmatrix}\\
&=&2^{1+2+\cdots +n}2^{-1-2-\cdots -n}\begin{vmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
a_{21}&a_{22}&\cdots&a_{2n}\\
\cdots&\cdots&\cdots&\cdots\\
a_{n1}&a_{n2}&\cdots&a_{nn}
\end{vmatrix}=c.
\end{array}
\end{equation*}
将该行列式的第\(n\) 行和第\(n-1\) 行互换,再互换新的每\(n-1\) 行和第\(n-2\) 行,依此类推,直至互换新的第\(2\) 行和第\(1\) 行,得原行列式,这个互换共经历了\(n-1\) 次。故得\(\det B=(-1)^{n-1}c\) 。
设\(A=(A_1,A_2,\cdots ,A_n)\) ,则
\begin{equation*}
\begin{array}{cl}
&\left| A_1+A_n,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|\\
=&\left| A_1,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|+\left| A_n,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|.
\end{array}
\end{equation*}
对于前一个行列式\(\left| A_1,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|\) ,从第一列开始,自左而右,依次将新的每一列乘以\(-1\) 加到后一列,直到第\(n-1\) 列,行列式不变,即\(\left| A_1,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|=\left| A_1,A_2,A_3,\cdots ,A_n\right|=c\) 。
对于后一个行列式\(\left| A_n,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|\) ,先将第\(1\) 列乘以\(-1\) 加到最后一列,再将新的行列式从最后一列开始,自右而左,依次将新的每一列乘以\(-1\) 加到前一列,直到第\(3\) 列,行列式不变,即
\begin{equation*}
\left| A_n,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|=\left| A_n,A_1,A_2,\cdots ,A_{n-1}\right|.
\end{equation*}
于是由\((3)\) 得\(\ \left| A_1+A_n,A_2+A_1,A_3+A_2,\cdots ,A_n+A_{n-1}\right|=c+(-1)^{n-1}c\) 。
4.
设\(X,Y,Z_2,Z_3,Z_4\) 是4维列向量,\(A=(X,Z_2,Z_3,Z_4),\ B=(Y,Z_2,Z_3,Z_4)\) 。已知\(\det A=5,\ \det B=2\) ,计算\(\det (A+B)\) 。
解答 .
因为\(A+B=(X+Y,2Z_2,2Z_3,2Z_4)\) ,所以
\begin{equation*}
\begin{array}{ccl}\det (A+B)&=&\left| X+Y,2Z_2,2Z_3,2Z_4\right|\\&=&2^3\left|X+Y,Z_2,Z_3,Z_4\right|\\&=&2^3\left(\left|X,Z_2,Z_3,Z_4\right|+\left|Y,Z_2,Z_3,Z_4\right|\right)\\&=&2^3(\det A+\det B)\\&=&56.\end{array}
\end{equation*}
5.
证明:
\(\begin{vmatrix}
a_1-b_1&b_1-c_1&c_1-a_1\\
a_2-b_2&b_2-c_2&c_2-a_2\\
a_3-b_3&b_3-c_3&c_3-a_3
\end{vmatrix}=0\) ;
\(\begin{vmatrix}
a_1+b_1&b_1+c_1&c_1+a_1\\
a_2+b_2&b_2+c_2&c_2+a_2\\
a_3+b_3&b_3+c_3&c_3+a_3
\end{vmatrix}=2\begin{vmatrix}
a_1&b_1&c_1\\
a_2&b_2&c_2\\
a_3&b_3&c_3
\end{vmatrix}\) 。
解答 .
因为第1列加到第\(3\) 列不改变行列式,所以
\begin{equation*}
\begin{vmatrix}
a_1-b_1&b_1-c_1&c_1-a_1\\
a_2-b_2&b_2-c_2&c_2-a_2\\
a_3-b_3&b_3-c_3&c_3-a_3
\end{vmatrix}=\begin{vmatrix}
a_1-b_1&b_1-c_1&c_1-b_1\\
a_2-b_2&b_2-c_2&c_2-b_2\\
a_3-b_3&b_3-c_3&c_3-b_3
\end{vmatrix}
\end{equation*}
注意到右式第\(2,3\) 列成比例,而两列成比例的行列式等于零,故
\begin{equation*}
\begin{vmatrix}
a_1-b_1&b_1-c_1&c_1-a_1\\
a_2-b_2&b_2-c_2&c_2-a_2\\
a_3-b_3&b_3-c_3&c_3-a_3
\end{vmatrix}=0.
\end{equation*}
\begin{equation*}
\begin{array}{ccl}
\begin{vmatrix}
a_1+b_1&b_1+c_1&c_1+a_1\\
a_2+b_2&b_2+c_2&c_2+a_2\\
a_3+b_3&b_3+c_3&c_3+a_3
\end{vmatrix}&=&\begin{vmatrix}
a_1&b_1+c_1&c_1+a_1\\
a_2&b_2+c_2&c_2+a_2\\
a_3&b_3+c_3&c_3+a_3
\end{vmatrix}+\begin{vmatrix}
b_1&b_1+c_1&c_1+a_1\\
b_2&b_2+c_2&c_2+a_2\\
b_3&b_3+c_3&c_3+a_3
\end{vmatrix}\\
&=&\begin{vmatrix}
a_1&b_1+c_1&c_1\\
a_2&b_2+c_2&c_2\\
a_3&b_3+c_3&c_3
\end{vmatrix}+\begin{vmatrix}
b_1&c_1&c_1+a_1\\
b_2&c_2&c_2+a_2\\
b_3&c_3&c_3+a_3
\end{vmatrix}\\&=&\begin{vmatrix}
a_1&b_1&c_1\\
a_2&b_2&c_2\\
a_3&b_3&c_3
\end{vmatrix}+\begin{vmatrix}
b_1&c_1&a_1\\
b_2&c_2&a_2\\
b_3&c_3&a_3
\end{vmatrix}\\&=&2\begin{vmatrix}
a_1&b_1&c_1\\
a_2&b_2&c_2\\
a_3&b_3&c_3
\end{vmatrix}.
\end{array}
\end{equation*}
6.
设\(A\) 为\(m\) 阶方阵,\(B\) 为\(n\) 阶方阵,\(C\) 为\(m\times n\) 矩阵。若\(\det \begin{pmatrix}
A&C\\0&B
\end{pmatrix}=d\) ,求\(\det \begin{pmatrix}
0&B\\A&C
\end{pmatrix}\) 。
解答 .
为了将\(\det \begin{pmatrix}
A&C\\0&B
\end{pmatrix}\) 的第\(m+1\) 行移到第\(1\) 行,前\(m\) 行依次保持原来次序向下移动一行,我们先将该行列式的第\(m+1\) 行和第\(m\) 行互换,再将新的第\(m\) 行和第\(m-1\) 行互换,依此类推,直至互换新的第\(2\) 行和第\(1\) 行,这个互换共经历了\(m\) 次。
类似地,对于最后\(n\) 行,每一行经历\(m\) 次互换,一共经历了\(mn\) 次互换可得\(\det \begin{pmatrix}
0&B\\A&C
\end{pmatrix}\) ,因此
\begin{equation*}
\det \begin{pmatrix}
0&B\\A&C
\end{pmatrix}=(-1)^{mn}\det \begin{pmatrix}
A&C\\0&B
\end{pmatrix}=(-1)^{mn}d.
\end{equation*}
7.
计算行列式:
\(\left|\begin{array}{cccc}
1&0&-1&2\\
1&2&2&1\\
3&4&2&5\\
4&2&2&11
\end{array}\right| \) ;
\(\begin{vmatrix}
2&1&2&2\\-1&3&6&3\\2&6&-6&3\\-2&2&0&1
\end{vmatrix}\) ;
\(\begin{vmatrix}
1&2&3&4\\
2&3&4&1\\
3&4&1&2\\
4&1&2&3
\end{vmatrix}\) ;
\(\begin{vmatrix}
x_1-m&x_2&\cdots&x_n\\
x_1&x_2-m&\cdots&x_n\\
\vdots&\vdots&&\vdots\\
x_1&x_2&\cdots&x_n-m
\end{vmatrix}\) ;
\(\begin{vmatrix}
a_1-b_1&a_1-b_2&\cdots&a_1-b_n\\
a_2-b_1&a_2-b_2&\cdots&a_2-b_n\\
\vdots&\vdots&&\vdots\\
a_n-b_1&a_n-b_2&\cdots&a_n-b_n\\
\end{vmatrix}\) ;
\(\begin{vmatrix}
a_1&a_2&a_3&\cdots&a_{n-1}&a_n\\
1&-1&0&\cdots&0&0\\
0&2&-2&\cdots&0&0\\
\vdots&\vdots&\vdots&&\vdots&\vdots\\
0&0&0&\cdots&n-1&1-n
\end{vmatrix}\) 。
解答 .
第\(2\) 行乘以\(-2\) 加到第\(3\) 行,第\(2\) 行乘以\(-1\) 加到第\(4\) 行,得到
\begin{equation*}
\mbox{原式}=\begin{vmatrix}
1&0&-1&2\\
1&2&2&1\\
1&0&-2&3\\
3&0&0&10
\end{vmatrix}
\end{equation*}
按第\(2\) 列展开,得
\begin{equation*}
\mbox{原式}=2\begin{vmatrix}
1&-1&2\\
1&-2&3\\
3&0&10
\end{vmatrix}=2\begin{vmatrix}
1&-1&2\\
-1&0&-1\\
3&0&10
\end{vmatrix}=2 \begin{vmatrix}
-1&-1\\3&10
\end{vmatrix}=-14.
\end{equation*}
将第\(4\) 列乘以\(2\) 加到第\(1\) 列,第\(4\) 列乘以\(-2\) 加到第\(2\) 列,得到
\begin{equation*}
\mbox{原式}=\begin{vmatrix}
6&-3&2&2\\
5&-3&6&3\\
8&0&-6&3\\
0&0&0&1
\end{vmatrix},
\end{equation*}
按第\(4\) 行展开,
\begin{equation*}
\mbox{原式}=\begin{vmatrix}
6&-3&2\\
5&-3&6\\
8&0&-6
\end{vmatrix}=-3 \begin{vmatrix}
6&2\\8&-6
\end{vmatrix}=-78.
\end{equation*}
将第\(2,3,4\) 都加到第\(1\) 行,再将新的第\(1\) 行提出公因数\(10\) ,得
\begin{equation*}
\begin{array}{ccccl}\mbox{原式}&=&10\begin{vmatrix}
1&1&1&1\\
2&3&4&1\\
3&4&1&2\\
4&1&2&3
\end{vmatrix}&=&10\begin{vmatrix}
1&1&1&1\\
0&1&2&-1\\
0&1&-2&-1\\
0&-3&-2&-1
\end{vmatrix}\\&=&10\begin{vmatrix}
1&1&1&1\\
0&1&2&-1\\
0&0&-4&0\\
0&0&4&-4
\end{vmatrix}
&=&10\begin{vmatrix}
1&1&1&1\\
0&1&2&-1\\
0&0&-4&0\\
0&0&0&-4
\end{vmatrix}=160.\\\end{array}
\end{equation*}
将第\(2,\cdots,n\) 列都加到第\(1\) 列,再将新的第\(1\) 列提出公因数\(\sum\limits_{i=1}^n x_i-m\) ,
\begin{equation*}
\mbox{原式}=(\sum\limits_{i=1}^n x_i-m)\cdot\begin{vmatrix}
1&x_2&\cdots&x_n\\
1&x_2-m&\cdots&x_n\\
\vdots&\vdots&&\vdots\\
1&x_2&\cdots&x_n-m
\end{vmatrix},
\end{equation*}
将第\(1\) 列乘以\(-x_i\) 加到第\(i\) 列(\(2\leq i\leq n\) ),得
\begin{equation*}
\mbox{原式}=(\sum\limits_{i=1}^n x_i-m)\cdot\begin{vmatrix}
1&0&\cdots&0\\
1&-m&\cdots&0\\
\vdots&\vdots&&\vdots\\
1&0&\cdots&-m
\end{vmatrix}=(\sum\limits_{i=1}^n x_i-m)\cdot (-m)^{n-1}.
\end{equation*}
从第\(n\) 列起,自右而左,依次将每一列加到前一列,直到第\(2\) 列为止,得
\begin{equation*}
\begin{array}{ccl}
\mbox{原式}&=&\begin{vmatrix}
a_1+\cdots+a_n&a_2+\cdots+a_n&a_3+\cdots+a_n&\cdots&a_{n-1}+a_n&a_n\\
0&-1&0&\cdots&0&0\\
0&0&-2&\cdots&0&0\\
\vdots&\vdots&\vdots&&\vdots&\vdots\\
0&0&0&\cdots&2-n&0\\
0&0&0&\cdots&0&1-n
\end{vmatrix}\\
&=&(-1)^{n-1}\cdot (\sum\limits_{i=1}^n a_i)\cdot (n-1)!
\end{array}
\end{equation*}
8.
计算下述行列式,并将结果因式分解:
\begin{equation*}
\begin{vmatrix}
\lambda-2&-2&2\\-2&\lambda-5&4\\2&4&\lambda-5
\end{vmatrix}.
\end{equation*}
解答 .
将第\(2\) 列加到第\(3\) 列,再将新的行列式的第\(3\) 行乘以\(-1\) 加到第\(2\) 行,
\begin{equation*}
\mbox{原式}=\begin{vmatrix}
\lambda-2&-2&0\\-2&\lambda-5&\lambda-1\\2&4&\lambda-1
\end{vmatrix}=\begin{vmatrix}
\lambda-2&-2&0\\-4&\lambda-9&0\\2&4&\lambda-1
\end{vmatrix},
\end{equation*}
按第\(3\) 列展开,得
\begin{equation*}
\mbox{原式}=(\lambda-1) \begin{vmatrix}
\lambda-2&-2\\-4&\lambda-9
\end{vmatrix}=(\lambda-1)(\lambda^2-11 \lambda+10)=(\lambda-1)^2(\lambda-10).
\end{equation*}
9.
计算\(n\) 阶行列式\(\begin{vmatrix}
a_1^{n-1}&a_1^{n-2}b_1&a_1^{n-3}b_1^2&\cdots&a_1b_1^{n-2}&b_1^{n-1}\\
a_2^{n-1}&a_2^{n-2}b_2&a_2^{n-3}b_2^2&\cdots&a_2b_2^{n-2}&b_2^{n-1}\\
a_3^{n-1}&a_3^{n-2}b_3&a_3^{n-3}b_3^2&\cdots&a_3b_3^{n-2}&b_3^{n-1}\\
\vdots&\vdots&\vdots&&\vdots&\vdots\\
a_n^{n-1}&a_n^{n-2}b_n&a_n^{n-3}b_n^2&\cdots&a_nb_n^{n-2}&b_n^{n-1}
\end{vmatrix}\) ,其中\(a_1a_2\cdots a_{n}\neq 0\) 。
解答 .
因为\(a_1a_2\cdots a_{n}\neq 0\) ,所以将第\(i\) 行提出\(a_i^{n-1}\) (\(1\leq i\leq n\) ),得
\begin{equation*}
\begin{array}{ccl}
\mbox{原式}&=&\prod\limits_{i=1}^n a_i^{n-1}\cdot\begin{vmatrix}
1&\frac{b_1}{a_1}&\left(\frac{b_1}{a_1}\right)^2&\cdots&\left(\frac{b_1}{a_1}\right)^{n-1}\\
1&\frac{b_2}{a_2}&\left(\frac{b_2}{a_2}\right)^2&\cdots&\left(\frac{b_2}{a_2}\right)^{n-1}\\
\vdots&\vdots&\vdots&&\vdots\\
1&\frac{b_n}{a_n}&\left(\frac{b_n}{a_n}\right)^2&\cdots&\left(\frac{b_n}{a_n}\right)^{n-1}
\end{vmatrix}=\prod\limits_{i=1}^n a_i^{n-1}\cdot\prod\limits_{1\leq j<i\leq n}\left(\frac{b_i}{a_i}-\frac{b_j}{a_j}\right)\\
&=&\prod\limits_{1\leq j<i\leq n} (a_jb_i-a_ib_j).
\end{array}
\end{equation*}
10.
设\(\det A=\begin{vmatrix}
-1 & -1 & 1 & -1\\
4 & 2 & 0 & 0\\
3 & 0 & 1 & 0\\
5 & 0 & 0 & 4 \\
\end{vmatrix}\) ,求
\(A_{11}+A_{12}+A_{13}+A_{14}\) ;
\(M_{11}+2M_{21}+3M_{31}+4M_{41}\) 。
解答 .
\begin{equation*}
A_{11}+A_{12}+A_{13}+A_{14}=\begin{vmatrix}
1 & 1 & 1 & 1\\
4 & 2 & 0 & 0\\
3 & 0 & 1 & 0\\
5 & 0 & 0 & 4
\end{vmatrix}=\begin{vmatrix}
-\frac{21}{4} & 1 & 1 & 1\\
0 & 2 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 4
\end{vmatrix}=-42.
\end{equation*}
因为
\begin{equation*}
M_{11}+2M_{21}+3M_{31}+4M_{41}=A_{11}-2A_{21}+3A_{31}-4A_{41},
\end{equation*}
所以
\begin{equation*}
M_{11}+2M_{21}+3M_{31}+4M_{41}=\begin{vmatrix}
1 & -1 & 1 & -1\\
-2 & 2 & 0 & 0\\
3 & 0 & 1 & 0\\
-4 & 0 & 0 & 4 \\
\end{vmatrix}=\begin{vmatrix}
-4 & -1 & 1 & -1\\
0 & 2 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 4 \\
\end{vmatrix}=-32.
\end{equation*}
11.
设
\begin{equation*}
D_n=\begin{vmatrix}
\cos\alpha&1&&&&&\\
1&2\cos\alpha&1&&&&\\
&1&2\cos\alpha&\ddots&&&\\
&&\ddots&\ddots&\ddots&&\\
&&&\ddots&2\cos\alpha&1&\\
&&&&1&2\cos\alpha&1\\
&&&&&1&2\cos\alpha
\end{vmatrix}_n,
\end{equation*}
证明:\(D_n=\cos n \alpha\) 。
12.
设\(n\geq 2\) ,计算\(n\) 阶行列式\(D_n=\begin{vmatrix}
a_1&x&\cdots&x\\
x&a_2&\cdots&x\\
\vdots&\vdots&&\vdots\\
x&x&\cdots&a_n
\end{vmatrix}\) ,其中\(x\neq a_i,\ i=1,2,\cdots ,n\) 。
解答 .
因为
\begin{equation*}
D_n=\begin{vmatrix}
a_1&x&\cdots&x&x\\
x&a_2&\cdots&x&x\\
\vdots&\vdots&&\vdots&\vdots\\
x&x&\cdots&a_{n-1}&x\\
x&x&\cdots&x&x
\end{vmatrix}+\begin{vmatrix}
a_1&x&\cdots&x&0\\
x&a_2&\cdots&x&0\\
\vdots&\vdots&&\vdots&\vdots\\
x&x&\cdots&a_{n-1}&0\\
x&x&\cdots&x&a_n-x
\end{vmatrix},
\end{equation*}
所以
\begin{equation*}
D_n=\begin{vmatrix}
a_1-x&0&\cdots&0&x\\
0&a_2-x&\cdots&0&x\\
\vdots&\vdots&&\vdots&\vdots\\
0&0&\cdots&a_{n-1}-x&x\\
0&0&\cdots&0&x
\end{vmatrix}+(a_n-x)D_{n-1},
\end{equation*}
即\(D_n=x\cdot\prod\limits_{i=1}^{n-1}(a_i-x)+(a_n-x)D_{n-1}\) 。依此类推,
\begin{equation*}
\begin{array}{ccl}
D_n&=&x\cdot\prod\limits_{i=1}^{n-1}(a_i-x)+(a_n-x)\left[ x\cdot\prod\limits_{i=1}^{n-2}(a_i-x)+(a_{n-1}-x)D_{n-2}\right]\\
&=&x\cdot\frac{\prod\limits_{i=1}^n (a_i-x)}{a_n-x}+x\cdot\frac{\prod\limits_{i=1}^n (a_i-x)}{a_{n-1}-x}+(a_n-x)(a_{n-1}-x)D_{n-2}\\
&=&\cdots\cdots\cdots\\
&=&x\cdot\frac{\prod\limits_{i=1}^n (a_i-x)}{a_n-x}+x\cdot\frac{\prod\limits_{i=1}^n (a_i-x)}{a_{n-1}-x}+\cdots+x\cdot\frac{\prod\limits_{i=1}^n (a_i-x)}{a_{2}-x}+\prod\limits_{i=2}^n(a_i-x)D_{1}.
\end{array}
\end{equation*}
由\(D_1=a_1\) 可知
\begin{equation*}
D_n=x\cdot\sum\limits_{j=2}^n\frac{\prod\limits_{i=1}^n (a_i-x)}{a_j-x}+a_1\cdot\prod\limits_{i=2}^n(a_i-x).
\end{equation*}
13.
计算\(n\) 阶行列式
\begin{equation*}
D_n= \begin{vmatrix}
x&y&y&\cdots&y&y\\
z&x&y&\cdots&y&y\\
z&z&x&\cdots&y&y\\
\vdots&\vdots&\vdots&&\vdots&\vdots\\
z&z&z&\cdots&x&y\\
z&z&z&\cdots&z&x
\end{vmatrix},
\end{equation*}
其中\(y\neq z\) 。
解答 .
\begin{equation}
\begin{array}{ccl}
D_n&=&\begin{vmatrix}
x&y&y&\cdots&y&y\\
z&x&y&\cdots&y&y\\
z&z&x&\cdots&y&y\\
\vdots&\vdots&\vdots&&\vdots&\vdots\\
z&z&z&\cdots&x&y\\
z&z&z&\cdots&z&y
\end{vmatrix}+\begin{vmatrix}
x&y&y&\cdots&y&0\\
z&x&y&\cdots&y&0\\
z&z&x&\cdots&y&0\\
\vdots&\vdots&\vdots&&\vdots&\vdots\\
z&z&z&\cdots&x&0\\
z&z&z&\cdots&z&x-y
\end{vmatrix}\\
&=&y\begin{vmatrix}
x-z&y-z&y-z&\cdots&y-z&1\\
0&x-z&y-z&\cdots&y-z&1\\
0&0&x-z&\cdots&y-z&1\\
\vdots&\vdots&\vdots&&\vdots&\vdots\\
0&0&0&\cdots&x-z&1\\
0&0&0&\cdots&0&1
\end{vmatrix}+(x-y)D_{n-1}\\
&=&y(x-z)^{n-1}+(x-y)D_{n-1},
\end{array}\tag{1.2}
\end{equation}
同理,
\begin{equation}
D_n=z(x-y)^{n-1}+(x-z)D_{n-1}.\tag{1.3}
\end{equation}
\begin{equation*}
D_n=\frac{y(x-z)^{n}-z(x-y)^n}{y-z}.
\end{equation*}