记\(\beta_0=\alpha_1+ \alpha_2 +\cdots +\alpha_k\)。因\(W\)是\(\varphi\)-子空间且\(\beta_0\in W\),所以
\begin{equation*}
\begin{array}{c}\varphi(\beta_0) =\lambda_1 \alpha_1+\lambda_2 \alpha_2+\cdots +\lambda_k \alpha_k\in W,\\
\varphi^2(\beta_0)=\lambda_1^2 \alpha_1+\lambda_2^2 \alpha_2+\cdots +\lambda_k^2 \alpha_k\in W,\\\vdots \\\varphi^{k-1}(\beta_0)=\lambda_1^{k-1} \alpha_1+\lambda_2^{k-1} \alpha_2+\cdots +\lambda_k^{k-1} \alpha_k\in W.\end{array}
\end{equation*}
记\(\beta_i=\varphi^i(\beta_0),i=0,1,\cdots ,k-1\)。我们断言,\(\beta_0,\beta_1,\beta_2,\cdots ,\beta_{k-1}\)线性无关。事实上,若\(x_0\beta_0+x_1\beta_1+x_2\beta_2+\cdots +x_{k-1}\beta_{k-1}=0\),则
\begin{equation*}
\begin{array}{rl}
& (x_0+\lambda_1x_1+\lambda_1^2x_2+\cdots +\lambda_1^{k-1}x_{k-1})\alpha_1\\
+ & (x_0+\lambda_2x_1+\lambda_2^2x_2+\cdots +\lambda_2^{k-1}x_{k-1})\alpha_2\\
+ \cdots + &(x_0+\lambda_kx_1+\lambda_k^2x_2+\cdots +\lambda_k^{k-1}x_{k-1})\alpha_k=0\mbox{。}\end{array}
\end{equation*}
因为属于不同特征值的特征向量\(\alpha_1,\alpha_2,\cdots ,\alpha_k\)线性无关,所以
\begin{equation*}
\left\{\begin{array}{c}
x_0+\lambda_1x_1+\lambda_1^2x_2+\cdots +\lambda_1^{k-1}x_{k-1}=0,\\
x_0+\lambda_2x_1+\lambda_2^2x_2+\cdots +\lambda_2^{k-1}x_{k-1}=0,\\
\vdots\\
x_0+\lambda_kx_1+\lambda_k^2x_2+\cdots +\lambda_k^{k-1}x_{k-1}=0.
\end{array}\right.
\end{equation*}
注意到系数行列式
\begin{equation*}
\left| \begin{array}{ccccc}
1&\lambda_1&\lambda_1^2&\cdots&\lambda_1^{k-1}\\
1&\lambda_2&\lambda_2^2&\cdots&\lambda_2^{k-1}\\
\cdots&\cdots&\cdots&\cdots&\cdots\\
1&\lambda_k&\lambda_k^2&\cdots&\lambda_k^{k-1}
\end{array}\right|=\prod\limits_{1\leq i<j\leq k}(\lambda_j- \lambda_i)\neq 0,
\end{equation*}
所以\(x_0=x_1=\cdots=x_{k-1}=0\)。因此,\(W\)中存在\(k\)个线性无关的向量\(\beta_0,\beta_1,\beta_2,\cdots ,\beta_{k-1}\)。故\(\dim W\geq k\)。