当\(\alpha,\beta\)线性相关时,则\(\alpha=0\)或\(\beta= c \alpha\),其中\(c\in\mathbb{C}\)。若\(\alpha=0\),则
\begin{equation*}
\left|\left(\alpha ,\beta\right)\right|=\left|\left(0 ,\beta\right)\right|=0=\|0\|\|\beta\|=\|\alpha\|\|\beta\|\mbox{。}
\end{equation*}
若\(\beta= c \alpha\),则
\begin{equation*}
\left|\left(\alpha ,\beta\right)\right|=\left|\left(\alpha ,c \alpha\right)\right|=\left|\overline{c}\left(\alpha ,\alpha\right)\right|=\left|c\right|\|\alpha\|^2=\|\alpha\|\|\beta\|\mbox{。}
\end{equation*}
当\(\alpha,\beta\)线性无关时,对任意\(t\in\mathbb{C}\),有\(t\alpha+\beta\neq 0\)。从而
\begin{equation*}
0<\left(t\alpha+ \beta,t\alpha+ \beta\right)=\left(\beta,\beta\right)+t\left(\alpha , \beta\right)+\overline{t}\left(\beta,\alpha\right)+|t|^2\left(\alpha,\alpha\right)
\end{equation*}
特别地,取\(t=-\frac{\left(\beta,\alpha\right)}{\left(\alpha,\alpha\right)}\),代入上式得
\begin{equation*}
0<\left(\beta,\beta\right)-\frac{\left(\beta,\alpha\right)}{\left(\alpha,\alpha\right)}\left(\alpha,\beta\right)-\frac{\left(\alpha,\beta\right)}{\left(\alpha,\alpha\right)}\left(\beta , \alpha\right)+\frac{\left(\alpha,\beta\right)\left(\beta,\alpha\right)}{\left(\alpha,\alpha\right)^2}\left(\alpha,\alpha\right)=\|\beta\|^2-\frac{\left|(\alpha,\beta)\right|^2}{\|\alpha\|^2}\mbox{。}
\end{equation*}
由此得出,\(\left|\left(\alpha ,\beta\right)\right|< \|\alpha\|\|\beta\|\)。