主要内容

高等代数教学辅导

4.4 \(\F^m\)的子空间、基与维数

建设中!

练习 练习

基础题.

1.
判断下列\(\mathbb{R}^m\)的子集是否为\(\mathbb{R}^m\)的子空间,说明理由。
  1. \(V_1=\{(a_1,\ldots,a_m)^T|a_i\geq 0,i=1,\ldots,m\}\)
  2. \(V_2=\{(a_1,\ldots,a_m)^T|a_1a_2\cdots a_m\geq 0\}\)
  3. \(V_3=\{(a_1,\ldots,a_n,0,\ldots,0)^T|a_1,\ldots,a_n\in\mathbb{R}\}\)
2.
判断下列数域\(\mathbb{F}\)\(n\)元方程的解集是否为\(\mathbb{F}^n\)的子空间:
  1. \(\sum\limits_{i=1}^n a_ix_i=0\)
  2. \(\sum\limits_{i=1}^n a_ix_i=1\)
  3. \(\sum\limits_{i=1}^n x_i^2=0\)
3.
\(\alpha_1,\ldots,\alpha_s,\beta_1,\ldots,\beta_t\in\F^m\),证明:
\begin{equation*} \langle\alpha_1,\ldots,\alpha_s\rangle +\langle\beta_1,\ldots,\beta_t\rangle =\langle\alpha_1,\ldots,\alpha_s,\beta_1,\ldots,\beta_t\rangle . \end{equation*}
4.
\(V_1\)\(V_2\)\(\F^m\)的子空间且\(V_1\subseteq V_2\)。证明:\(V_1=V_2\)的充分必要条件是\(\dim V_1=\dim V_2\)
5.
在线性空间\(\mathbb{F}^m\)中,证明:
  1. 存在\(\mathbb{F}^m\)的子空间\(V\),使得\(V\)中任一非零向量的分量均不为零;
  2. \(\mathbb{F}^m\)的子空间\(U\)中任一非零向量的分量均不为零,则\(\dim U=1\)
6.
求由向量\(\alpha_i\)生成的子空间与由向量\(\beta_i\)生成的子空间的交与和空间的基与维数: \(\left\{\begin{array}{c} \alpha_1=(1,2,1,0)^T,\\ \alpha_2=(-1,1,1,1)^T, \end{array} \right.\quad\left\{\begin{array}{c} \beta_1=(2,-1,0,1)^T,\\ \beta_2=(1,-1,3,7)^T. \end{array}\right.\)
7.
\(V_1,V_2,V_3\)是列向量空间\(V\)的子空间,举例说明:
\begin{equation*} V_1\cap (V_2 +V_3)=(V_1\cap V_2)+(V_1\cap V_3) \end{equation*}
未必成立。

提高题.

8.
\(V_1\)\(V_2\)是列向量空间\(V\)的子空间。证明:\(V_1\cup V_2\)\(V\)的子空间的充分必要条件为\(V_1\subseteq V_2\)\(V_2\subseteq V_1\)
9.
\(A\in\mathbb{F}^{m\times n}\)\(A=(\alpha_1,\dots ,\alpha_n)\),其中\(\alpha_i\in\mathbb{F}^m(1\leq i\leq n)\)。记
\begin{equation*} V=\{\ AX\ |\ X\in\mathbb{F}^n\ \}. \end{equation*}
证明:
  1. \(V\)\(\mathbb{F}^m\)的子空间;
  2. \(V=\langle \alpha_1,\dots ,\alpha_n\rangle\)
  3. \(\dim V=r(A)\)
10.
写出\(\F^m\)\(s(s\geq 2)\)个子空间\(V_1,\cdots ,V_s\)相应的维数公式,并予以证明。
11.
\begin{equation*} U=\{(a_1,\ldots,a_m)^T\in\F^m|a_1=\cdots=a_m\}, \end{equation*}
\begin{equation*} V=\{(a_1,\ldots,a_m)^T\in\F^m|a_1+\cdots +a_m=0\}, \end{equation*}
证明:
  1. \(U,V\)\(\F^m\)的子空间;
  2. \(\mathbb{F}^m=U\oplus V\)
12.
\(V_1\)\(V_2\)是列向量空间\(V\)的子空间,且\(\dim V_1=\dim V_2\)。证明:存在\(V\)的子空间\(U\),使得\(V=U\oplus V_1=U\oplus V_2\)