“a.\(\Rightarrow \)b.”因为\(\left(f(x),g(x)\right)=1\),所以存在\(u(x),v(x)\in\mathbb{F}[x]\),使得
\begin{equation*}
u(x)f(x)+v(x)g(x)=1,
\end{equation*}
即存在\(u(x)-v(x),v(x)\in\mathbb{F}[x]\),使得
\begin{equation*}
\left(u(x)-v(x)\right)f(x)+v(x)\left(f(x)+g(x)\right)=1,
\end{equation*}
故\(\left(f(x),f(x)+g(x)\right)=1\)。
“b.\(\Rightarrow \)c.”因为\(\left(f(x),f(x)+g(x)\right)=1\),所以存在\(u(x),v(x)\in\mathbb{F}[x]\),使得
\begin{equation*}
u(x)f(x)+v(x)\left(f(x)+g(x)\right)=1,
\end{equation*}
即存在\(-u(x),u(x)+v(x)\in\mathbb{F}[x]\),使得
\begin{equation*}
-u(x)g(x)+\left(u(x)+v(x)\right)\left(f(x)+g(x)\right)=1,
\end{equation*}
故\(\left(g(x),f(x)+g(x)\right)=1\)。
“c.\(\Rightarrow \)a.”因为\(\left(g(x),f(x)+g(x)\right)=1\),所以存在\(u(x),v(x)\in\mathbb{F}[x]\),使得
\begin{equation*}
u(x)g(x)+v(x)\left(f(x)+g(x)\right)=1,
\end{equation*}
即存在\(v(x),u(x)+v(x)\in\mathbb{F}[x]\),使得
\begin{equation*}
v(x)f(x)+\left(u(x)+v(x)\right)g(x)=1,
\end{equation*}
故\(\left(f(x),g(x)\right)=1\)。
\begin{equation*}
\left(f(x),f(x)+g(x)\right)=1,\left(g(x),f(x)+g(x)\right)=1,
\end{equation*}
从而\(\left(f(x)g(x),f(x)+g(x)\right)=1\)。
“d.\(\Rightarrow \)a.”因为\(\left(f(x)g(x),f(x)+g(x)\right)=1\),所以存在\(u(x),v(x)\in\mathbb{F}[x]\),使得
\begin{equation*}
u(x)f(x)g(x)+v(x)\left(f(x)+g(x)\right)=1,
\end{equation*}
即存在\(v(x),v(x)+u(x)f(x)\in\mathbb{F}[x]\),使得
\begin{equation*}
v(x)f(x)+\left(v(x)+u(x)f(x)\right)g(x)=1,
\end{equation*}
故\(\left(f(x),g(x)\right)=1\)。