主要内容\(\newcommand{\Ima}{\rm Im }
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\F}{\mathbb F}
\newcommand{\C}{\mathbb C}
\newcommand{\K}{\mathbb K}
\newcommand{\myunit}{1 cm}
\newcommand{\blue}[1]{{\color{blue}#1}}
\newcommand\iddots{\mathinner{
\kern1mu\raise1pt{.}
\kern2mu\raise4pt{.}
\kern2mu\raise7pt{\Rule{0pt}{7pt}{0pt}.}
\kern1mu
}}
\tikzset{
node style sp/.style={draw,circle,minimum size=\myunit},
node style ge/.style={circle,minimum size=\myunit},
arrow style mul/.style={draw,sloped,midway,fill=white},
arrow style plus/.style={midway,sloped,fill=white},
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
节 2.1 线性方程组、消元法及几何直观
练习 练习
基础题.
1.
判断下列方程是否是关于变元\(x_1,x_2,x_3\)的线性方程。
-
-
\(\frac{1}{2}x_1-3x_2=4\);
-
\(2^{x_1}+3^{x_2}+5^{x_3}=6\);
-
\(2x_1-x_2^{-1}+3x_3=0\);
-
\(\tan x_1 +\sin x_2+\cos x_3=3\);
-
\(-x_1+2x_3=7x_1-2x_2-9\)。
2.
判断下列方程组是否是关于变元\(x_1,x_2\)的线性方程组。若是,求解该线性方程组。
-
\(\displaystyle \left\{\begin{array}{ccc}
2x^2-y^2&=&3,\\
-x^2+y^2&=&-1;
\end{array}\right.\)
-
\(\displaystyle \left\{\begin{array}{ccc}
3x-6y&=&3,\\
-x+2y&=&1;
\end{array}\right.\)
-
\(\displaystyle \left\{\begin{array}{ccc}
3x-6y&=&3,\\
-x+2y&=&-1;
\end{array}\right.\)
3.
求解下列线性方程组:
-
\(\displaystyle \left\{\begin{array}{rcl}
x_1-x_2+x_3&=&b_1,\\
x_2+2x_3&=&b_2,\\
x_3&=&b_3;
\end{array}\right.\)
-
\(\displaystyle \left\{\begin{array}{rcl}
x_1+2x_2-x_3+x_4&=&b_1,\\
x_3-2x_4&=&b_2,\\
x_4&=&b_3;
\end{array}\right.\)
-
\(\displaystyle \left\{\begin{array}{rcl}
x_1+x_2+x_3+x_4&=&1,\\
3x_1+2x_2+x_3+x_4&=&-3,\\
5x_1+4x_2+3x_3+3x_4&=&-1.
\end{array}\right.\)