主要内容

高等代数教学辅导

2.3 分块矩阵

建设中!

练习 练习

基础题.

1.
\(M_1\)\(m_1\)阶方阵,\(N_1\)\(n_1\)阶方阵,\(A_{ij}\)\(m_i\times m_j\)矩阵,\(B_{kl}\)\(m_k\times n_l\)矩阵,\(K\)\(m_1\times m_2\)矩阵,\(L\)\(n_1\times n_2\)矩阵,计算:
  1. \(\begin{pmatrix} M_1 &{\bf 0}\\ {\bf 0} & E_{m_2} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}, \begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}\begin{pmatrix} N_1 & {\bf 0}\\ {\bf 0} & E_{n_2} \end{pmatrix}\)
  2. \(\begin{pmatrix} {\bf 0} & E_{m_2}\\ E_{m_1} & {\bf 0} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}, \begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}\begin{pmatrix} {\bf 0} & E_{n_1}\\ E_{n_2} & {\bf 0} \end{pmatrix}\)
  3. \(\begin{pmatrix} E_{m_1} & K\\ {\bf 0} & E_{m_2} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix},\ \begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}\begin{pmatrix} E_{n_1} & L\\ {\bf 0} & E_{n_2} \end{pmatrix}\)
  4. \(\begin{pmatrix} A_{11} & A_{12} & A_{13}\\ {\bf 0} & A_{22} & A_{23}\\ {\bf 0} & {\bf 0} & A_{33} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12} & B_{13}\\ {\bf 0} & B_{22} & B_{23}\\ {\bf 0} & {\bf 0} & B_{33} \end{pmatrix}\)
2.
将矩阵\(A=\begin{pmatrix} 1 & 0 & 1 & -1\\ 0 & 1 & 0 & 1\\ 0 & 0 & 0 & 1\\ 0 & 0 & 2 & 0 \end{pmatrix}\)\(B=\begin{pmatrix} 1 & -3 & -1 & 2\\ -3 & 2 & -5 & -4\\ 0 & 0 & 4 & 3\\ 0 & 0 & 2 & 1 \end{pmatrix}\) 适当分块后,计算\(AB\)
3.
\(A=\begin{pmatrix} 3 & 1 & 0 & 0\\ 0 & 3 & 0 & 0\\ 0 & 0 & 3 & 9\\ 0 & 0 & 1 & 3 \end{pmatrix}\),计算
  1. \(A^n\),其中\(n\geq 2\)
  2. \(AA^T, A^TA\)

提高题.

4.
\(A\)\(n\)阶方阵,证明:若对任意\(n\)维列向量\(\alpha\)都有\(A\alpha=0\),那么\(A=0\)
5.
\(\varepsilon_i\)\(n\)维标准单位列向量,\(E_{ij}\)\(n\)阶基础矩阵。证明:
  1. \(\varepsilon_i^T\varepsilon_j= \delta_{ij}\),其中\(\delta_{ij}\)Kronecker符号,即\(\delta_{ij}=\left\{\begin{array}{cl} 1, & i=j,\\ 0, & i\neq j; \end{array}\right.\)
  2. \(\varepsilon_i\varepsilon_j^T= E_{ij}\)
  3. \(\displaystyle E_{ij}E_{kl}=\left\{\begin{array}{cl} E_{il}, & j=k,\\ {\bf 0}, & j\neq k; \end{array}\right.\)
  4. \(A\)\(n\)阶方阵,则\(E_{ij}A\)\(A\)的第\(i\)行变为第\(j\)行元,其它元变为\(0\)
  5. \(A\)\(n\)阶方阵,则\(AE_{ij}\)\(A\)的第\(j\)列变为第\(i\)列元,其它元变为\(0\)
  6. \(A\)\(n\)阶方阵,则\(E_{ij}AE_{kl}=a_{jk}E_{il}\)
6.
\(A\)\(n\)阶方阵,证明:若对任意\(n\)阶方阵\(B\)都有\({\rm tr}(AB)=0\),那么\(A=0\)
7.
\begin{equation*} A=\begin{pmatrix} a_1E_{n_1} & & &\\ & a_2E_{n_2} & &\\ & & \ddots & \\ & & & a_rE_{n_r} \end{pmatrix} \end{equation*}
其中\(a_i\neq a_j\)(当\(i\neq j\)时),\(E_{n_i}\)\(n_i\)阶单位矩阵。证明:与\(A\)可交换的矩阵只能是分块对角矩阵 \({\rm diag}(B_1, \ldots,B_r)\),其中\(B_i\)\(n_i\)阶方阵,\(i=1,\ldots,r\)
8.
计算 \(\begin{pmatrix} 0 & E_4\\ 1 & 0 \end{pmatrix}^n\),其中\(n=2,3,4,5\)
9.
\(n\)基础循环矩阵
\begin{equation*} C=\begin{pmatrix} 0 & 1 & 0 & \cdots & 0\\ 0 & 0 & 1 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & 1\\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}, \end{equation*}
证明:对任意\(n\)阶方阵\(A\)
  1. \(CA\)相当于把\(A\)的每一行向上移一行,第1行换到最后一行;
  2. \(AC\)相当于把\(A\)的每一列向右移一列,最后一列换到第1列。
10.
\(C\)\(n\)阶基础循环矩阵, 证明:对任意\(1\leq k\leq n\)
\begin{equation*} C^k=\begin{pmatrix} {\bf 0} & E_{n-k}\\ E_k & {\bf 0} \end{pmatrix}. \end{equation*}
11.
下列形式的矩阵称为循环矩阵
\begin{equation*} \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n\\ a_n & a_1 & a_2 & \cdots & a_{n-1}\\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2}\\ \vdots & \vdots & \vdots & & \vdots\\ a_2 & a_3 & a_4 & \cdots & a_1 \end{pmatrix}. \end{equation*}
证明:
  1. \(n\)阶循环矩阵\(A\)必可表示成\(n\)阶基本循环矩阵\(J\)的多项式;
  2. 两个\(n\)阶循环矩阵的乘积仍为循环矩阵。
12.
每一行和每一列有且仅有一个1,其余元素均为0的\(n\)阶方阵称为\(n\)置换矩阵,证明:
  1. \(P\)\(n\)阶置换矩阵,则 \(P^TP=E_n\)
  2. \(P_1,P_2\)都是\(n\)阶置换矩阵,则\(P_1P_2\)也是\(n\)阶置换矩阵。