主要内容

高等代数教学辅导

2.3 分块矩阵

建设中!

练习 练习

基础题.

1.
\(M_1\)\(m_1\)阶方阵,\(N_1\)\(n_1\)阶方阵,\(A_{ij}\)\(m_i\times m_j\)矩阵,\(B_{kl}\)\(m_k\times n_l\)矩阵,\(K\)\(m_1\times m_2\)矩阵,\(L\)\(n_1\times n_2\)矩阵,计算:
  1. \(\begin{pmatrix} M_1 &{\bf 0}\\ {\bf 0} & E_{m_2} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}, \begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}\begin{pmatrix} N_1 & {\bf 0}\\ {\bf 0} & E_{n_2} \end{pmatrix}\)
  2. \(\begin{pmatrix} {\bf 0} & E_{m_2}\\ E_{m_1} & {\bf 0} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}, \begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}\begin{pmatrix} {\bf 0} & E_{n_1}\\ E_{n_2} & {\bf 0} \end{pmatrix}\)
  3. \(\begin{pmatrix} E_{m_1} & K\\ {\bf 0} & E_{m_2} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix},\ \begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}\begin{pmatrix} E_{n_1} & L\\ {\bf 0} & E_{n_2} \end{pmatrix}\)
  4. \(\begin{pmatrix} A_{11} & A_{12} & A_{13}\\ {\bf 0} & A_{22} & A_{23}\\ {\bf 0} & {\bf 0} & A_{33} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12} & B_{13}\\ {\bf 0} & B_{22} & B_{23}\\ {\bf 0} & {\bf 0} & B_{33} \end{pmatrix}\)
解答.
  1. \begin{equation*} \begin{pmatrix} M_1 & {\bf 0}\\ {\bf 0} & E_{m_2} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}= \begin{pmatrix} MB_{11} & MB_{12}\\ B_{21} & B_{22} \end{pmatrix}, \end{equation*}
    \begin{equation*} \begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}\begin{pmatrix} N_1 & {\bf 0}\\ {\bf 0} & E_{n_2} \end{pmatrix}=\begin{pmatrix} B_{11}N & B_{12}\\ B_{21}N & B_{22} \end{pmatrix}; \end{equation*}
  2. \begin{equation*} \begin{pmatrix} {\bf 0} & E_{m_2}\\ E_{m_1} & {\bf 0} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}=\begin{pmatrix} B_{21} & B_{22}\\ B_{11} & B_{12} \end{pmatrix}, \end{equation*}
    \begin{equation*} \begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}\begin{pmatrix} {\bf 0} & E_{n_1}\\ E_{n_2} & {\bf 0} \end{pmatrix}=\begin{pmatrix} B_{12} & B_{11}\\ B_{22} & B_{21} \end{pmatrix}; \end{equation*}
  3. \begin{equation*} \begin{pmatrix} E_{m_1} & K\\ {\bf 0} & E_{m_2} \end{pmatrix}\begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}=\begin{pmatrix} B_{11}+KB_{21} & B_{12}+KB_{22}\\ B_{21} & B_{22} \end{pmatrix}, \end{equation*}
    \begin{equation*} \begin{pmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{pmatrix}\begin{pmatrix} E_{n_1} & L\\ {\bf 0} & E_{n_2} \end{pmatrix}=\begin{pmatrix} B_{11} & B_{11}L+B_{12}\\ B_{21} & B_{21}L+B_{22} \end{pmatrix}; \end{equation*}
  4. \(\displaystyle \begin{pmatrix} A_{11}B_{11} & A_{11}B_{12}+A_{12}B_{22} & A_{11}B_{13}+A_{12}B_{23}+A_{13}B_{33}\\ {\bf 0} & A_{22}B_{22} & A_{22}B_{23}+A_{23}B_{33}\\ {\bf 0} & {\bf 0} & A_{33}B_{33} \end{pmatrix}.\)
2.
将矩阵\(A=\begin{pmatrix} 1 & 0 & 1 & -1\\ 0 & 1 & 0 & 1\\ 0 & 0 & 0 & 1\\ 0 & 0 & 2 & 0 \end{pmatrix}\)\(B=\begin{pmatrix} 1 & -3 & -1 & 2\\ -3 & 2 & -5 & -4\\ 0 & 0 & 4 & 3\\ 0 & 0 & 2 & 1 \end{pmatrix}\) 适当分块后,计算\(AB\)
解答.
\begin{equation*} A_1=\begin{pmatrix} 1 & -1\\ 0 & 1 \end{pmatrix},A_2=\begin{pmatrix} 0 & 1\\ 2 & 0 \end{pmatrix}, \end{equation*}
\begin{equation*} B_1=\begin{pmatrix} 1 & -3\\ -3 & 2 \end{pmatrix},B_2=\begin{pmatrix} -1 & 2\\ -5 & -4 \end{pmatrix}, B_3=\begin{pmatrix} 4 & 3\\ 2 & 1 \end{pmatrix}, \end{equation*}
\(A=\begin{pmatrix} E_2 & A_1\\ {\bf 0} & A_2 \end{pmatrix},\ B=\begin{pmatrix} B_1 & B_2\\ {\bf 0} & B_3 \end{pmatrix}\),因此
\begin{equation*} AB=\begin{pmatrix} B_1 & B_2+A_1B_3\\ {\bf 0} & A_2B_3 \end{pmatrix}=\begin{pmatrix} 1 & -3 & 1 & 4\\ -3 & 2 & -3 & -3\\ 0 & 0 & 2 & 1\\ 0 & 0 & 8 & 6 \end{pmatrix}. \end{equation*}
3.
\(A=\begin{pmatrix} 3 & 1 & 0 & 0\\ 0 & 3 & 0 & 0\\ 0 & 0 & 3 & 9\\ 0 & 0 & 1 & 3 \end{pmatrix}\),计算
  1. \(A^n\),其中\(n\geq 2\)
  2. \(AA^T, A^TA\)
解答.
\(A_1=\begin{pmatrix} 3&1\\0&3 \end{pmatrix}\)\(A_2=\begin{pmatrix} 3&9\\1&3 \end{pmatrix}\),则\(A=\begin{pmatrix} A_1&{\bf 0}\\{\bf 0}&A_2 \end{pmatrix}\)
  1. 注意到
    \begin{equation*} A_1=3E_2+J, \end{equation*}
    其中\(J=\begin{pmatrix} 0&1\\0&0 \end{pmatrix}\),且当\(i\geq 2\)时,\(J^i=0\),所以
    \begin{equation*} \begin{array}{ll} A_1^n&=\sum\limits_{i=0}^n C_n^i\cdot (3E_2)^{n-i}\cdot J^i\\ &=(3E_2)^n+n(3E_2)^{n-1}J\\ &=\begin{pmatrix} 3^n&n\cdot 3^{n-1}\\0&3^n \end{pmatrix}.\end{array} \end{equation*}
    由于\(A_2=\begin{pmatrix} 3\\1 \end{pmatrix}\begin{pmatrix} 1&3 \end{pmatrix}\),所以
    \begin{equation*} \begin{array}{ll} A_2^n&=[\begin{pmatrix} 3\\1 \end{pmatrix}\begin{pmatrix} 1&3 \end{pmatrix}]^n\\ &=\begin{pmatrix} 3\\1 \end{pmatrix}[\begin{pmatrix} 1&3 \end{pmatrix}\begin{pmatrix} 3\\1 \end{pmatrix}]^{n-1}\begin{pmatrix} 1&3 \end{pmatrix}\\ &=6^{n-1} \begin{pmatrix} 3&9\\1&3 \end{pmatrix}.\end{array} \end{equation*}
    因此
    \begin{equation*} A^n=\begin{pmatrix} A_1^n&{\bf 0}\\{\bf 0}&A_2^n \end{pmatrix}=\begin{pmatrix} 3^n&n\cdot 3^{n-1}&0&0\\0&3^n&0&0\\0&0&3\cdot 6^{n-1}&9\cdot 6^{n-1}\\0&0&6^{n-1}&3\cdot 6^{n-1} \end{pmatrix}. \end{equation*}
  2. 由于\(A^T=\begin{pmatrix} A_1^T & {\bf 0}\\ {\bf 0} & A_2^T \end{pmatrix},\) 所以
    \begin{equation*} AA^T=\begin{pmatrix} A_1A_1^T & {\bf 0}\\ {\bf 0} & A_2{A_2}^T \end{pmatrix}=\begin{pmatrix} 10 & 3 & 0 & 0\\ 3 & 9 & 0 & 0\\ 0 & 0 & 90 & 30\\ 0 & 0 & 30 & 10 \end{pmatrix}, \end{equation*}
    \begin{equation*} A^TA=\begin{pmatrix} A_1^TA_1 & {\bf 0}\\ {\bf 0} & {A_2}^TA_2 \end{pmatrix}=\begin{pmatrix} 9 & 3 & 0 & 0\\ 3 & 10 & 0 & 0\\ 0 & 0 & 10 & 30\\ 0 & 0 & 30 & 90 \end{pmatrix}. \end{equation*}

提高题.

4.
\(A\)\(n\)阶方阵,证明:若对任意\(n\)维列向量\(\alpha\)都有\(A\alpha={\bf 0}\),那么\(A={\bf 0}\)
解答.
根据已知条件,对任意\(1\leq i\leq n\)\(A\varepsilon_i={\bf 0}\),而\(A\varepsilon_i\)表示\(A\)的第\(i\)列,所以\(A\)的每一列全为零,由此推出\(A={\bf 0}\)
5.
\(\varepsilon_i\)\(n\)维标准单位列向量,\(E_{ij}\)\(n\)阶基础矩阵。证明:
  1. \(\varepsilon_i^T\varepsilon_j= \delta_{ij}\),其中\(\delta_{ij}\)Kronecker符号,即\(\delta_{ij}=\left\{\begin{array}{cl} 1, & i=j,\\ 0, & i\neq j; \end{array}\right.\)
  2. \(\varepsilon_i\varepsilon_j^T= E_{ij}\)
  3. \(\displaystyle E_{ij}E_{kl}=\left\{\begin{array}{cl} E_{il}, & j=k,\\ {\bf 0}, & j\neq k; \end{array}\right.\)
  4. \(A\)\(n\)阶方阵,则\(E_{ij}A\)的第\(i\)行是\(A\)的第\(j\)行元,其它元为\(0\)
  5. \(A\)\(n\)阶方阵,则\(AE_{ij}\)\(j\)列是\(A\)的第\(i\)列元,其它元为\(0\)
  6. \(A\)\(n\)阶方阵,则\(E_{ij}AE_{kl}=a_{jk}E_{il}\)
解答.
  1. 方法一:直接计算得。
    方法二:分别将单位矩阵\(E_n\)按行和列分块,得
    \begin{equation*} E_n=\begin{pmatrix} \varepsilon_1^T\\\vdots\\\varepsilon_n^T \end{pmatrix},\ E_n=\begin{pmatrix} \varepsilon_1&\varepsilon_2&\cdots&\varepsilon_n \end{pmatrix}. \end{equation*}
    由于\(E_n=E_n^2=\begin{pmatrix} \varepsilon_1^T\\\vdots\\\varepsilon_n^T \end{pmatrix}\begin{pmatrix} \varepsilon_1&\varepsilon_2&\cdots&\varepsilon_n \end{pmatrix}=(\varepsilon_i^T\varepsilon_j)_{n\times n}\),比较两边矩阵的第\((i,j)\)元素,得\(\varepsilon_i^T\varepsilon_j= \delta_{ij}\)
  2. \begin{equation*} \begin{array}{ccccccccc} &&\mbox{第}j\mbox{列}&&&&\mbox{第}j\mbox{列}&&\\\varepsilon_i\varepsilon_j^T=\varepsilon_i (0&\cdots&1&\cdots&0)=(0&\cdots&\varepsilon_i&\cdots&0)=E_{ij}. \end{array} \end{equation*}
  3. \begin{equation*} E_{ij}=\varepsilon_i\varepsilon_j^T,\ E_{kl}=\varepsilon_k\varepsilon_l^T, \end{equation*}
    \begin{equation*} E_{ij}E_{kl}=(\varepsilon_i\varepsilon_j^T)(\varepsilon_k\varepsilon_l^T)=\varepsilon_i(\varepsilon_j^T\varepsilon_k)\varepsilon_l^T. \end{equation*}
    \(\varepsilon_j^T\varepsilon_k= \delta_{jk}\),因此
    \begin{equation*} E_{ij}E_{kl}=\delta_{jk}\varepsilon_i\varepsilon_l^T=\delta_{jk}E_{il}=\left\{\begin{array}{cc} E_{il},&j=k,\\{\bf 0},&j\neq k. \end{array}\right. \end{equation*}
  4. \(E_{ij}\)按行分块,得\(E_{ij}=\begin{pmatrix} {\bf 0}\\ \vdots\\ \varepsilon_j^T\\ \vdots\\ {\bf 0} \end{pmatrix}\ (\mbox{第}i\mbox{行})\),则
    \begin{equation*} E_{ij}A=\begin{pmatrix} {\bf 0}\\ \vdots\\ \varepsilon_j^TA\\ \vdots\\ {\bf 0} \end{pmatrix}(\mbox{第}i\mbox{行}) \end{equation*}
    \(\varepsilon_j^TA\)表示\(A\)的第\(j\)行,因此\(E_{ij}A\)\(A\)的第\(i\)行变为第\(j\)行元,其他元变为\(0\)
  5. \(E_{ij}\)按列分块,得
    \begin{equation*} \begin{array}{ccccc} &&\mbox{第}j\mbox{列}&&\\ E_{ij}=({\bf 0}&\cdots&\varepsilon_i&\cdots&{\bf 0}), \end{array} \end{equation*}
    \begin{equation*} \begin{array}{ccccc} &&\mbox{第}j\mbox{列}&&\\ AE_{ij}=({\bf 0}&\cdots&A\varepsilon_i&\cdots&{\bf 0}). \end{array} \end{equation*}
    \(A\varepsilon_i\)表示\(A\)的第\(i\)列,因此\(AE_{ij}\)\(A\)的第\(j\)列变为第\(i\)列元,其他元变为\(0\)
  6. \(A\)按列分块得\(A=\begin{pmatrix} A_1&A_2&\cdots&A_n \end{pmatrix}\),由 项 2.3.5.e
    \begin{equation*} \begin{array}{ccccc} &&\mbox{第}l\mbox{列}&&\\ AE_{kl}=(0&\cdots&A_k&\cdots&0), \end{array} \end{equation*}
    再由项 2.3.5.d\(E_{ij}AE_{kl}\)\(AE_{kl}\)的第\(i\)行变为第\(j\)行元,其他元变为\(0\)。因此
    \begin{equation*} E_{ij}AE_{kl}=a_{jk}E_{il}. \end{equation*}
6.
\(A\)\(n\)阶方阵,证明:若对任意\(n\)阶方阵\(B\)都有\({\rm tr}(AB)=0\),那么\(A={\bf 0}\)
解答.
根据已知,对任意\(1\leq i,j \leq n\),都有\({\rm tr}(AE_{ij})=0\),而
\begin{equation*} AE_{ij}=\begin{pmatrix} & & & \mbox{第}j\mbox{列} & & & \\ 0 & \cdots & 0 & a_{1i} & 0 & \cdots & 0\\ \vdots & & \vdots & \vdots & \vdots & & \vdots\\ 0 & \cdots & 0 & a_{ji} & 0 & \cdots & 0\\ \vdots & & \vdots & \vdots & \vdots & & \vdots\\ 0 & \cdots & 0 & a_{ni} & 0 & \cdots & 0\end{pmatrix}, \end{equation*}
因此\({\rm tr}(AE_{ij})=a_{ji}=0\),从而\(A={\bf 0}\)
7.
\begin{equation*} A=\begin{pmatrix} a_1E_{n_1} & & &\\ & a_2E_{n_2} & &\\ & & \ddots & \\ & & & a_rE_{n_r} \end{pmatrix} \end{equation*}
其中\(a_i\neq a_j\)(当\(i\neq j\)时),\(E_{n_i}\)\(n_i\)阶单位矩阵。证明:与\(A\)可交换的矩阵只能是分块对角矩阵 \({\rm diag}(B_1, \ldots,B_r)\),其中\(B_i\)\(n_i\)阶方阵,\(i=1,\ldots,r\)
解答.
\(B=(B_{ij})\)与矩阵\(A\)可交换,其中\(B_{ij}\)\(n_i\times n_j\)矩阵。由
\begin{equation*} \begin{array}{ll} AB & =\begin{pmatrix} a_1E_{n_1}B_{11}&a_1E_{n_1}B_{12}&\cdots&a_1E_{n_1}B_{1r}\\ a_2E_{n_2}B_{21}&a_2E_{n_2}B_{22}&\cdots&a_2E_{n_2}B_{2r}\\ \vdots&\vdots& &\vdots\\ a_rE_{n_r}B_{r1}&a_rE_{n_r}B_{r2}&\cdots&a_rE_{n_r}B_{rr} \end{pmatrix}\\ &=\begin{pmatrix} a_1B_{11}&a_1B_{12}&\cdots&a_1B_{1r}\\ a_2B_{21}&a_2B_{22}&\cdots&a_2B_{2r}\\ \vdots&\vdots&&\vdots\\ a_rB_{r1}&a_rB_{r2}&\cdots&a_rB_{rr} \end{pmatrix}, \end{array} \end{equation*}
\begin{equation*} \begin{array}{ll} BA & =\begin{pmatrix} B_{11}a_1E_{n_1}&B_{12}a_2E_{n_2}&\cdots&B_{1r}a_rE_{n_r}\\ B_{21}a_1E_{n_1}&B_{22}a_2E_{n_2}&\cdots&B_{2r}a_rE_{n_r}\\ \vdots&\vdots& &\vdots\\ B_{r1}a_1E_{n_1}&B_{r2}a_2E_{n_2}&\cdots&B_{rr}a_rE_{n_r} \end{pmatrix}\\ & =\begin{pmatrix} a_1B_{11}&a_2B_{12}&\cdots&a_rB_{1r}\\ a_1B_{21}&a_2B_{22}&\cdots&a_rB_{2r}\\ \vdots&\vdots& &\vdots\\ a_1B_{r1}&a_2B_{r2}&\cdots&a_rB_{rr} \end{pmatrix},\end{array} \end{equation*}
可知:\(a_iB_{ij}=a_jB_{ij},\ \forall 1\leq i,j\leq n\),即
\begin{equation*} (a_i-a_j)B_{ij}=0,\ \forall 1\leq i,j\leq n, \end{equation*}
而当\(i\neq j\)时,\(a_i\neq a_j\),故\(B_{ij}=0(i\neq j)\)。因此
\begin{equation*} B={\rm diag} (B_{11}, B_{22}, \cdots,B_{rr}) \end{equation*}
为分块对角矩阵。
8.
计算 \(\begin{pmatrix} {\bf 0} & E_4\\ 1 & {\bf 0} \end{pmatrix}^n\),其中\(n=2,3,4,5\)
解答.
因为\(A=\begin{pmatrix} \varepsilon_5& \varepsilon_1&\varepsilon_2&\varepsilon_3&\varepsilon_4 \end{pmatrix}\),所以
\begin{equation*} \begin{array}{cl} A^2 &= A\begin{pmatrix} \varepsilon_5& \varepsilon_1&\varepsilon_2&\varepsilon_3&\varepsilon_4 \end{pmatrix}\\ & =\begin{pmatrix} A\varepsilon_5& A\varepsilon_1&A\varepsilon_2&A\varepsilon_3&A\varepsilon_4 \end{pmatrix}\\ &= \begin{pmatrix} \varepsilon_4&\varepsilon_5& \varepsilon_1&\varepsilon_2&\varepsilon_3 \end{pmatrix}\\ & =\begin{pmatrix} 0&E_3\\E_2&0 \end{pmatrix},\end{array} \end{equation*}
\begin{equation*} \begin{array}{ll} A^3 & =AA^2\\ & =\begin{pmatrix} A\varepsilon_4&A\varepsilon_5& A\varepsilon_1&A\varepsilon_2&A\varepsilon_3 \end{pmatrix}\\ & =\begin{pmatrix} \varepsilon_3&\varepsilon_4&\varepsilon_5& \varepsilon_1&\varepsilon_2 \end{pmatrix}\\ & =\begin{pmatrix} 0&E_2\\E_3&0 \end{pmatrix},\end{array} \end{equation*}
\begin{equation*} \begin{array}{ll} A^4 & =AA^3\\ & =\begin{pmatrix} A\varepsilon_3&A\varepsilon_4&A\varepsilon_5& A\varepsilon_1&A\varepsilon_2 \end{pmatrix}\\ & =\begin{pmatrix} \varepsilon_2&\varepsilon_3&\varepsilon_4&\varepsilon_5& \varepsilon_1 \end{pmatrix}\\ & =\begin{pmatrix} 0&1\\E_4&0 \end{pmatrix},\end{array} \end{equation*}
\begin{equation*} \begin{array}{ll} A^5 & =AA^4\\ & =\begin{pmatrix} A\varepsilon_2&A\varepsilon_3&A\varepsilon_4&A\varepsilon_5& A\varepsilon_1 \end{pmatrix}\\ & =\begin{pmatrix} \varepsilon_1&\varepsilon_2&\varepsilon_3&\varepsilon_4&\varepsilon_5 \end{pmatrix}\\ & =E_5.\end{array} \end{equation*}
9.
\(n\)基础循环矩阵
\begin{equation*} C=\begin{pmatrix} 0 & 1 & 0 & \cdots & 0\\ 0 & 0 & 1 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & 1\\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}, \end{equation*}
证明:对任意\(n\)阶方阵\(A\)
  1. \(CA\)相当于把\(A\)的每一行向上移一行,第1行换到最后一行;
  2. \(AC\)相当于把\(A\)的每一列向右移一列,最后一列换到第1列。
解答.
  1. 将矩阵\(C\)行分块,则
    \begin{equation*} CA=\begin{pmatrix} \varepsilon_2^T\\ \varepsilon_3^T\\ \vdots\\ \varepsilon_n^T\\ \varepsilon_1^T \end{pmatrix}A=\begin{pmatrix} \varepsilon_2^TA\\ \varepsilon_3^TA\\ \vdots\\ \varepsilon_n^TA\\ \varepsilon_1^TA \end{pmatrix} \end{equation*}
    相当于把\(A\)的每一行向上移一行,第1行换到最后一行。
  2. 将矩阵\(C\)列分块,则
    \begin{equation*} \begin{array}{ll} AC & =A\begin{pmatrix} \varepsilon_n & \varepsilon_1 & \varepsilon_2 & \cdots & \varepsilon_{n-1} \end{pmatrix}\\ & =\begin{pmatrix} A\varepsilon_n & A\varepsilon_1 & A\varepsilon_2 & \cdots & A\varepsilon_{n-1} \end{pmatrix} \end{array} \end{equation*}
    相当于把\(A\)的每一列向右移一列,最后一列换到第1列。
10.
\(C\)\(n\)阶基础循环矩阵, 证明:对任意\(1\leq k\leq n\)
\begin{equation*} C^k=\begin{pmatrix} {\bf 0} & E_{n-k}\\ E_k & {\bf 0} \end{pmatrix}. \end{equation*}
解答.
\(k\)用数学归纳法证明。
\(k=1\)时,结论显然成立。假设 \(C^{k-1}=\begin{pmatrix} {\bf 0} & E_{n-k+1}\\ E_{k-1} & {\bf 0} \end{pmatrix}\),由项 2.3.9.a
\begin{equation*} C^k=CC^{k-1} \end{equation*}
相当于把\(C^{k-1}\)的每一行向上移一行,第1行换到最后一行,所以
\begin{equation*} C^k=\begin{pmatrix} {\bf 0} & E_{n-k}\\ E_{k} & {\bf 0} \end{pmatrix}. \end{equation*}
11.
下列形式的矩阵称为循环矩阵
\begin{equation*} \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n\\ a_n & a_1 & a_2 & \cdots & a_{n-1}\\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2}\\ \vdots & \vdots & \vdots & & \vdots\\ a_2 & a_3 & a_4 & \cdots & a_1 \end{pmatrix}. \end{equation*}
证明:
  1. \(n\)阶循环矩阵\(A\)必可表示成\(n\)阶基本循环矩阵\(C\)的多项式;
  2. 两个\(n\)阶循环矩阵的乘积仍为循环矩阵。
解答.
  1. 由于
    \begin{equation*} A=a_1E_n+a_2\begin{pmatrix} {\bf 0} & E_{n-1}\\ 1 & 0\end{pmatrix}+a_3\begin{pmatrix} {\bf 0} & E_{n-2}\\ E_2 & {\bf 0}\end{pmatrix}+\cdots +a_n\begin{pmatrix} {\bf 0} & 1\\ E_{n-1} & {\bf 0}\end{pmatrix}, \end{equation*}
    所以由练习 2.3.10
    \begin{equation*} A=a_1E_n+a_2C+a_3C^2+\cdots +a_n C^{n-1} \end{equation*}
    可表示成\(n\)阶基本循环矩阵\(C\)的多项式。
  2. \(A,B\)\(n\)阶循环矩阵,则\(A,B\)都可表成\(n\)阶基本循环矩阵\(C\)的多项式,其乘积矩阵\(AB\)仍是\(C\)的多项式,因此\(AB\)仍为循环矩阵。
12.
每一行和每一列有且仅有一个1,其余元素均为0的\(n\)阶方阵称为\(n\)置换矩阵,证明:
  1. \(P\)\(n\)阶置换矩阵,则 \(P^TP=E_n\)
  2. \(P_1,P_2\)都是\(n\)阶置换矩阵,则\(P_1P_2\)也是\(n\)阶置换矩阵。
解答.
  1. 因为\(P\)\(n\)阶置换矩阵,所以按列分块
    \begin{equation*} P=\begin{pmatrix} \varepsilon_{i_1} & \varepsilon_{i_2} & \cdots & \varepsilon_{i_n} \end{pmatrix}, \end{equation*}
    其中\((i_1,i_2,\ldots,i_n)\)\((1,2,\ldots,n)\)的一个排列。
    \begin{equation*} P^TP=\begin{pmatrix} \varepsilon_{i_1}^T\varepsilon_{i_1} & \varepsilon_{i_1}^T\varepsilon_{i_2} & \cdots & \varepsilon_{i_1}^T\varepsilon_{i_n}\\ \varepsilon_{i_2}^T\varepsilon_{i_1} & \varepsilon_{i_2}^T\varepsilon_{i_2} & \cdots & \varepsilon_{i_2}^T\varepsilon_{i_n}\\ \vdots & \vdots & & \vdots\\ \varepsilon_{i_n}^T\varepsilon_{i_1} & \varepsilon_{i_n}^T\varepsilon_{i_2} & \cdots & \varepsilon_{i_n}^T\varepsilon_{i_n} \end{pmatrix}, \end{equation*}
    注意到
    \begin{equation*} \varepsilon_{i_j}^T\varepsilon_{i_k}=\left\{\begin{array}{ll} 1, & j=k,\\ 0, & j\neq k, \end{array}\right. \end{equation*}
    因此\(P^TP=E_n\)
  2. \begin{equation*} P_2=\begin{pmatrix} \varepsilon_{i_1} & \varepsilon_{i_2} & \cdots & \varepsilon_{i_n} \end{pmatrix}, \end{equation*}
    其中\((i_1,i_2,\ldots,i_n)\)\((1,2,\ldots,n)\)的一个排列,则
    \begin{equation*} P_1P_2=\begin{pmatrix} P_1\varepsilon_{i_1} & P_1\varepsilon_{i_2} & \cdots & P_1\varepsilon_{i_n} \end{pmatrix} \end{equation*}
    的列向量是\(P_1\)列向量的重新排列。由于\(P_1\)是置换矩阵,其列向量是\(\varepsilon_1,\ldots,\varepsilon_n\)的一个排列,所以\(P_1P_2\)列向量也是\(\varepsilon_1,\ldots,\varepsilon_n\)的排列,由此可知\(P_1P_2\)也是置换矩阵。