假设当 \(n=k\)时结论成立,考虑\(k+1\)个多项式
\begin{equation*}
f_1(x),\ldots ,f_k(x),f_{k+1}(x).
\end{equation*}
记 \(d_k(x)=\left(f_1(x),\ldots ,f_k(x)\right)\),则
\begin{equation*}
\left(f_1(x),\ldots ,f_k(x),f_{k+1}(x)\right)=\left(d_k(x),f_{k+1}(x)\right),
\end{equation*}
于是存在 \(u(x),v(x)\in\F[x]\),使得
\begin{equation*}
u(x)d_k(x)+v(x)f_{k+1}(x)=\left(f_1(x),\ldots ,f_k(x),f_{k+1}(x)\right).
\end{equation*}
由归纳假设存在
\begin{equation*}
g_{ij}(x)\in\mathbb{F}[x](2\leq i\leq k, 1\leq j\leq k),
\end{equation*}
使得
\begin{equation}
\begin{vmatrix}
f_1(x)&f_2(x)&\cdots&f_k(x)\\
g_{21}(x)&g_{22}(x)&\cdots&g_{2k}(x)\\
\vdots&\vdots& &\vdots\\
g_{k1}(x)&g_{k2}(x)&\cdots&g_{kk}(x)\\
\end{vmatrix}=d_k(x).\tag{3.3.3}
\end{equation}
记
(3.3.3) 左式
\((i,j)\)元的余子式为
\(M_{ij}\),则按第一行展开
\begin{equation*}
d_k(x)=f_1(x)M_{11}-f_2(x)M_{12}+\cdots +(-1)^{k+1}f_k(x)M_{1k}.
\end{equation*}
因此存在 \(\frac{f_1(x)v(x)}{d_k(x)},\ldots ,\frac{f_k(x)v(x)}{d_k(x)}\in\F[x]\),使得
\begin{equation*}
\sum\limits_{j=1}^k(-1)^{j+1}\frac{v(x)f_j(x)}{d_k(x)}M_{1j}=v(x).
\end{equation*}
注意到 \(k\)阶行列式
\begin{equation}
D_k(x)=\begin{vmatrix}
g_{21}(x)&g_{22}(x)&\cdots&g_{2k}(x)\\
\vdots&\vdots& &\vdots\\
g_{k1}(x)&g_{k2}(x)&\cdots&g_{kk}(x)\\
-\frac{v(x)f_1(x)}{d_k(x)}&-\frac{v(x)f_2(x)}{d_k(x)}&\cdots&-\frac{v(x)f_k(x)}{d_k(x)}
\end{vmatrix}\tag{3.3.4}
\end{equation}
\((k,j)\)元的余子式与
(3.3.3) 左式
\((1,j)\)元的余子式
\(M_{1j}\)相同,所以将
(3.3.4)按第
\(k\)行展开,得
\begin{equation}
\begin{array}{ccl}
D_k(x)&=&\sum\limits_{j=1}^k(-1)^{k+j}\cdot\left(-\frac{v(x)f_j(x)}{d_k(x)}\right)\cdot M_{1j}\\
&= & (-1)^{k}\cdot\left(\sum\limits_{j=1}^k(-1)^{j+1}\frac{v(x)f_j(x)}{d_k(x)} M_{1j}\right)\\
&=& (-1)^{k}v(x).
\end{array}\tag{3.3.5}
\end{equation}
取
\begin{equation*}
g_{2,k+1}(x)=g_{3,k+1}(x)=\cdots =g_{k,k+1}(x)=0,
\end{equation*}
\begin{equation*}
g_{k+1,j}(x)=-\frac{v(x)f_j(x)}{d_k(x)},\ j=1,\ldots ,k,
\end{equation*}
\begin{equation*}
g_{k+1,k+1}(x)=u(x),
\end{equation*}
则
\begin{equation*}
\begin{array}{cl}
&\begin{vmatrix}
f_1(x)&f_2(x)&\cdots&f_k(x)&f_{k+1}(x)\\
g_{21}(x)&g_{22}(x)&\cdots&g_{2k}(x)&g_{2,k+1}(x)\\
\vdots&\vdots& &\vdots&\vdots\\
g_{k1}(x)&g_{k2}(x)&\cdots&g_{kk}(x)&g_{k,k+1}(x)\\
g_{k+1,1}(x)&g_{k+1,2}(x)&\cdots&g_{k+1,k}(x)&g_{k+1,k+1}(x)
\end{vmatrix}\\
=&\begin{vmatrix}
f_1(x)&f_2(x)&\cdots&f_k(x)&f_{k+1}(x)\\
g_{21}(x)&g_{22}(x)&\cdots&g_{2k}(x)&0\\
\vdots&\vdots& &\vdots&\vdots\\
g_{k1}(x)&g_{k2}(x)&\cdots&g_{kk}(x)&0\\
-\frac{v(x)f_1(x)}{d_k(x)}&-\frac{v(x)f_2(x)}{d_k(x)}&\cdots&-\frac{v(x)f_k(x)}{d_k(x)}&u(x)
\end{vmatrix}.
\end{array}
\end{equation*}
按第 \(k+1\) 列展开,
\begin{equation*}
\begin{array}{cl}
&\begin{vmatrix}
f_1(x)&f_2(x)&\cdots&f_k(x)&f_{k+1}(x)\\
g_{21}(x)&g_{22}(x)&\cdots&g_{2k}(x)&g_{2,k+1}(x)\\
\vdots&\vdots& &\vdots&\vdots\\
g_{k1}(x)&g_{k2}(x)&\cdots&g_{kk}(x)&g_{k,k+1}(x)\\
g_{k+1,1}(x)&g_{k+1,2}(x)&\cdots&g_{k+1,k}(x)&g_{k+1,k+1}(x)
\end{vmatrix}\\
=&(-1)^{k+2}f_{k+1}(x)D_k(x)+u(x)\begin{vmatrix}
f_1(x)&f_2(x)&\cdots&f_k(x)\\
g_{21}(x)&g_{22}(x)&\cdots&g_{2k}(x)\\
\vdots&\vdots& &\vdots\\
g_{k1}(x)&g_{k2}(x)&\cdots&g_{kk}(x)\\
\end{vmatrix},
\end{array}
\end{equation*}
\begin{equation*}
\begin{array}{cl}
&\begin{vmatrix}
f_1(x)&f_2(x)&\cdots&f_k(x)&f_{k+1}(x)\\
g_{21}(x)&g_{22}(x)&\cdots&g_{2k}(x)&g_{2,k+1}(x)\\
\vdots&\vdots& &\vdots&\vdots\\
g_{k1}(x)&g_{k2}(x)&\cdots&g_{kk}(x)&g_{k,k+1}(x)\\
g_{k+1,1}(x)&g_{k+1,2}(x)&\cdots&g_{k+1,k}(x)&g_{k+1,k+1}(x)
\end{vmatrix}\\
=&f_{k+1}(x)v(x)+u(x)d_k(x)\\
=&\left(f_1(x),\ldots ,f_k(x),f_{k+1}(x)\right),
\end{array}
\end{equation*}
结论成立。