主要内容\(\newcommand{\Ima}{\rm Im }
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\F}{\mathbb F}
\newcommand{\C}{\mathbb C}
\newcommand{\K}{\mathbb K}
\newcommand{\myunit}{1 cm}
\newcommand{\blue}[1]{{\color{blue}#1}}
\newcommand\iddots{\mathinner{
\kern1mu\raise1pt{.}
\kern2mu\raise4pt{.}
\kern2mu\raise7pt{\Rule{0pt}{7pt}{0pt}.}
\kern1mu
}}
\tikzset{
node style sp/.style={draw,circle,minimum size=\myunit},
node style ge/.style={circle,minimum size=\myunit},
arrow style mul/.style={draw,sloped,midway,fill=white},
arrow style plus/.style={midway,sloped,fill=white},
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
节 7.6 \(\lambda\)-矩阵相抵与矩阵相似
练习 练习
基础题.
1.
-
\(\begin{pmatrix}
1&\lambda&1\\\lambda&1&2\\1&0&1
\end{pmatrix}\);
-
\(\begin{pmatrix}
1&\lambda&3\\\lambda&1&\lambda\\-1&\lambda&1
\end{pmatrix}\)。
2.
若\(A(\lambda)\simeq B(\lambda),\ C(\lambda)\simeq D(\lambda)\),证明:
\begin{equation*}
\begin{pmatrix}
A(\lambda)&0\\0&C(\lambda)
\end{pmatrix}\simeq \begin{pmatrix}
B(\lambda)&0\\0&D(\lambda)
\end{pmatrix}.
\end{equation*}
提高题.
3.
设
\(A(\lambda)=A_s\lambda^s+A_{s-1}\lambda^{s-1}+\cdots+A_1\lambda+A_0\)且
\(\deg A(\lambda)=s>0\)。证明:若
\(A(\lambda)\)可逆,则
\(\det A_s=0\)且
\(\det A_0\neq 0\)。
挑战题.
4.
设\(A,B\in\F^{n\times n},M(\lambda),N(\lambda)\)是\(n\)阶\(\lambda\)-矩阵,且满足
\begin{equation*}
M(\lambda)(\lambda E-A)=(\lambda E-B)N(\lambda).
\end{equation*}
证明:
-
存在\(R\in\F^{n\times n}\)及\(\lambda\)-矩阵\(Q(\lambda)\),使得
\begin{equation*}
M(\lambda)=(\lambda E-B)Q(\lambda)+R,\ N(\lambda)=Q(\lambda)(\lambda E-A)+R;
\end{equation*}
-
\(M(\lambda)\)可逆的充要条件是
\(N(\lambda)\)可逆,此时
\(R\)可逆,进而
\(A\)相似于
\(B\)。