主要内容\(\newcommand{\Ima}{\rm Im }
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\F}{\mathbb F}
\newcommand{\C}{\mathbb C}
\newcommand{\K}{\mathbb K}
\newcommand{\myunit}{1 cm}
\newcommand{\blue}[1]{{\color{blue}#1}}
\newcommand\iddots{\mathinner{
\kern1mu\raise1pt{.}
\kern2mu\raise4pt{.}
\kern2mu\raise7pt{\Rule{0pt}{7pt}{0pt}.}
\kern1mu
}}
\tikzset{
node style sp/.style={draw,circle,minimum size=\myunit},
node style ge/.style={circle,minimum size=\myunit},
arrow style mul/.style={draw,sloped,midway,fill=white},
arrow style plus/.style={midway,sloped,fill=white},
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
节 5.1 标准内积及其几何意义
练习 练习
基础题.
1.
2.
记
\begin{equation*}
u = \begin{pmatrix}
-1\\2
\end{pmatrix},\ v = \begin{pmatrix}
4\\6
\end{pmatrix},\ w = \begin{pmatrix}
3\\-1\\-5
\end{pmatrix},\ x = \begin{pmatrix}
6\\-2\\3
\end{pmatrix},
\end{equation*}
计算
-
\(u \cdot u\),
\(v \cdot u\)和
\(\dfrac{v \cdot u}{u \cdot u}\);
-
\(w \cdot w\),
\(x \cdot w\)和
\(\dfrac{x \cdot w}{w \cdot w}\);
-
\(\dfrac{1}{w \cdot w}w\),
\(\dfrac{1}{u \cdot u}u\);
-
\(\left( \dfrac{u \cdot v}{v \cdot v}\right) v\)、
\(\left( \dfrac{x \cdot w}{x \cdot x}\right) x\);
-
3.
将下列向量单位化:
\begin{equation*}
u = \begin{pmatrix}
-3\\4
\end{pmatrix},\ v = \begin{pmatrix}
8/3\\ 2
\end{pmatrix},\ w = \begin{pmatrix}
6\\4\\3
\end{pmatrix},\ x \begin{pmatrix}
7/4\\1/2\\1
\end{pmatrix}.
\end{equation*}
4.
求下列每组向量间的距离和夹角:
-
\(x = \begin{pmatrix}
10\\-3
\end{pmatrix}\)和
\(y = \begin{pmatrix}
-1\\-5
\end{pmatrix}\);
-
\(u = \begin{pmatrix}
0\\-5\\2
\end{pmatrix}\)和
\(v = \begin{pmatrix}
-4\\-1\\8
\end{pmatrix}\)。
提高题.
5.
平行四边形法则:设\(u,v\)都是标准内积空间\(\R^n\)中对向量,则
\begin{equation*}
\|u+v\|^2+\|u-v\|^2 = 2\left(\|u\|^2 +\|v\|^2 \right).
\end{equation*}
6.
设\(A\in \R^{m\times n}\)、\(B \in \R^{m\times n}\)是两个同阶矩阵,证明不等式:
\begin{equation*}
\left({\rm tr}(AB^T)\right)^2\le {\rm tr}(AA^T){\rm tr}(BB^T).
\end{equation*}
7.
设\(\alpha \)、\(\beta \)和\(\gamma\)是标准内积空间\(\mathbb{R}^n\)中的向量,求证:
-
当
\(\alpha\ne \beta\)时,
\(d(\alpha,\beta) > 0\);
-
\(d(\alpha,\beta)=d(\beta,\alpha) \);
-
\(d(\alpha,\beta)\le d(\alpha,\gamma)+d(\gamma,\beta)\)。