主要内容

高等代数教学辅导

5.1 标准内积及其几何意义

建设中!

练习 练习

基础题.

1.
给出标准内积空间性质的详细证明。
2.
\begin{equation*} u = \begin{pmatrix} -1\\2 \end{pmatrix},\ v = \begin{pmatrix} 4\\6 \end{pmatrix},\ w = \begin{pmatrix} 3\\-1\\-5 \end{pmatrix},\ x = \begin{pmatrix} 6\\-2\\3 \end{pmatrix}, \end{equation*}
计算
  1. \(u \cdot u\)\(v \cdot u\)\(\dfrac{v \cdot u}{u \cdot u}\)
  2. \(w \cdot w\)\(x \cdot w\)\(\dfrac{x \cdot w}{w \cdot w}\)
  3. \(\dfrac{1}{w \cdot w}w\)\(\dfrac{1}{u \cdot u}u\)
  4. \(\left( \dfrac{u \cdot v}{v \cdot v}\right) v\)\(\left( \dfrac{x \cdot w}{x \cdot x}\right) x\)
  5. \(\| w \|\)\(\| x \|\)
3.
将下列向量单位化:
\begin{equation*} u = \begin{pmatrix} -3\\4 \end{pmatrix},\ v = \begin{pmatrix} 8/3\\ 2 \end{pmatrix},\ w = \begin{pmatrix} 6\\4\\3 \end{pmatrix},\ x \begin{pmatrix} 7/4\\1/2\\1 \end{pmatrix}. \end{equation*}
4.
求下列每组向量间的距离和夹角:
  1. \(x = \begin{pmatrix} 10\\-3 \end{pmatrix}\)\(y = \begin{pmatrix} -1\\-5 \end{pmatrix}\)
  2. \(u = \begin{pmatrix} 0\\-5\\2 \end{pmatrix}\)\(v = \begin{pmatrix} -4\\-1\\8 \end{pmatrix}\)

提高题.

5.
平行四边形法则:设\(u,v\)都是标准内积空间\(\R^n\)中对向量,则
\begin{equation*} \|u+v\|^2+\|u-v\|^2 = 2\left(\|u\|^2 +\|v\|^2 \right). \end{equation*}
6.
\(A\in \R^{m\times n}\)\(B \in \R^{m\times n}\)是两个同阶矩阵,证明不等式:
\begin{equation*} \left({\rm tr}(AB^T)\right)^2\le {\rm tr}(AA^T){\rm tr}(BB^T). \end{equation*}
7.
\(\alpha \)\(\beta \)\(\gamma\)是标准内积空间\(\mathbb{R}^n\)中的向量,求证:
  1. \(\alpha\ne \beta\)时,\(d(\alpha,\beta) > 0\)
  2. \(d(\alpha,\beta)=d(\beta,\alpha) \)
  3. \(d(\alpha,\beta)\le d(\alpha,\gamma)+d(\gamma,\beta)\)