由于\(E_{11},E_{12},E_{21},E_{22}\)是\(\mathbb{F}^{2\times 2}\)的一个基,所以
\begin{equation*}
\begin{array}{c}
(A_1,A_2,A_3,A_4)=(E_{11},E_{12},E_{21},E_{22})B,\\(B_1,B_2,B_3,B_4)=(E_{11},E_{12},E_{21},E_{22})C,\end{array}
\end{equation*}
其中\(B=\left(\begin{array}{cccc}
1&1&-1&-1\\2&-1&2&-1\\-1&1&1&0\\0&1&1&1
\end{array}\right),C=\left(\begin{array}{cccc}
2&0&-2&1\\1&1&1&3\\0&2&1&1\\1&2&2&2
\end{array}\right)\)。 则\((B_1,B_2,B_3,B_4)=(A_1,A_2,A_3,A_4)(B^{-1}C)\)。
\begin{equation*}
(B,C)=\left(\begin{array}{cccccccc}
1&1&-1&-1&2&0&-2&1\\2&-1&2&-1&1&1&1&3\\-1&1&1&0&0&2&1&1\\0&1&1&1&1&2&2&2
\end{array}\right)\rightarrow\left(\begin{array}{cccccccc}
1&0&0&0&1&0&0&1\\0&1&0&0&1&1&0&1\\0&0&1&0&0&1&1&1\\0&0&0&1&0&0&1&0
\end{array}\right)
\end{equation*}
故基\(A_1,A_2,A_3,A_4\)到基\(B_1,B_2,B_3,B_4\)的过渡矩阵为
\begin{equation*}
B^{-1}C=\left(\begin{array}{cccc}
1&0&0&1\\1&1&0&1\\0&1&1&1\\0&0&1&0
\end{array}\right).
\end{equation*}
\(A\)在基\(A_1,A_2,A_3,A_4\)与\(B_1,B_2,B_3,B_4\)下的坐标分别为
\begin{equation*}
B^{-1}\left(\begin{array}{c}0\\-3\\2\\1\end{array}\right)=\left(\begin{array}{c}-1\\1\\0\\0\end{array}\right),\ C^{-1}\left(\begin{array}{c}0\\-3\\2\\1\end{array}\right)=\left(\begin{array}{c}1\\2\\0\\-2\end{array}\right).
\end{equation*}