主要内容

高等代数教学辅导

3.3 坐标

建设中!

子节 3.3.1 主要知识点

定义 3.3.1.

\(\xi_1,\xi_2,\cdots,\xi_n\)是线性空间\(V\)的一个基,对于任意的向量\(\alpha\in V\),有
\begin{equation*} \alpha=a_1\xi_1+a_2\xi_2+\cdots +a_n\xi_n, \end{equation*}
这里的\(a_1,a_2,\cdots,a_n\in \mathbb{F}\)是唯一确定的, 将\((a_1,a_2,\cdots,a_n)^T\)称为\(\alpha\)在基\(\xi_1,\xi_2,\cdots,\xi_n\)下的坐标,形式上记作
\begin{equation*} \alpha=(\xi_1,\xi_2,\cdots,\xi_n)\left(\begin{array}{c} a_1\\a_2\\\vdots\\a_n \end{array}\right). \end{equation*}

3.3.3.

\(\xi_1,\xi_2,\cdots,\xi_n\)是线性空间\(V\)的一个基,求向量\(\xi_i\)在基\(\xi_1,\xi_2,\cdots,\xi_n\)下的坐标,\(i=1,2,\cdots,n\)

3.3.4.

已知\(A=\left(\begin{array}{cc} 2&1\\-1&0 \end{array}\right)\)
  1. \(A\)在基\(E_{11},E_{12},E_{21},E_{22}\)下的坐标;
  2. \(A\)在基\(E_{12},E_{11},E_{21},E_{22}\)下的坐标;
  3. \(A\)在基\(E_{11},E_{12},E_{11}+E_{21},E_{22}\)下的坐标。

备注 3.3.5.

向量的坐标依赖于基。 基不同, 坐标不同。
向量的形式书写法
设线性空间\(V\)中向量组 \(\beta_1,\beta_2,\cdots,\beta_t\)可由向量组 \(\alpha_1,\alpha_2,\cdots,\alpha_s\) 线性表出,即存在\(a_{ij}\in \mathbb{F}, \ i=1,2,\cdots s,\ j=1,2,\cdots,t\),使得
\begin{equation*} \left\{\begin{array}{c} \beta_1=a_{11}\alpha_1+a_{21}\alpha_2+\cdots+a_{s1}\alpha_s\\ \beta_2=a_{12}\alpha_1+a_{22}\alpha_2+\cdots+a_{s2}\alpha_s\\ \cdots\\ \beta_t=a_{1t}\alpha_1+a_{2t}\alpha_2+\cdots+a_{st}\alpha_s\\ \end{array}\right. , \end{equation*}
形式上记作
\begin{equation*} (\beta_1,\beta_2,\cdots,\beta_t)=(\alpha_1,\alpha_2,\cdots,\alpha_s) \left(\begin{array}{cccc} a_{11}&a_{12}&\cdots&a_{1t}\\ a_{21}&a_{22}&\cdots&a_{2t}\\ \cdots&\cdots&\cdots&\cdots\\ a_{s1}&a_{s2}&\cdots&a_{st} \end{array}\right), \end{equation*}
即存在\(A\in \mathbb{F}^{s\times t}\),使得
\begin{equation*} (\beta_1,\beta_2,\cdots,\beta_t)=(\alpha_1,\alpha_2,\cdots,\alpha_s)A. \end{equation*}
  • \(\alpha_1,\alpha_2,\cdots,\alpha_s\in V,\ A,\ B\in \mathbb{F}^{s\times t},\ C\in \mathbb{F}^{t\times p}\),则
    \begin{equation*} (\alpha_1,\alpha_2,\cdots,\alpha_s)A+(\alpha_1,\alpha_2,\cdots,\alpha_s)B=(\alpha_1,\alpha_2,\cdots,\alpha_s)(A+B); \end{equation*}
    \begin{equation*} c[(\alpha_1,\alpha_2,\cdots,\alpha_s)A]=(\alpha_1,\alpha_2,\cdots,\alpha_s)(cA); \end{equation*}
    \begin{equation*} \left((\alpha_1,\alpha_2,\cdots,\alpha_s)B\right)C=(\alpha_1,\alpha_2,\cdots,\alpha_s)(BC). \end{equation*}
  • \(\alpha_1,\alpha_2,\cdots,\alpha_s\)线性无关,则
    \begin{equation*} (\alpha_1,\alpha_2,\cdots,\alpha_s)A=(\alpha_1,\alpha_2,\cdots,\alpha_s)B\Leftrightarrow A=B. \end{equation*}

定义 3.3.7.

\(\xi_1,\xi_2,\cdots,\xi_n\)\(\eta_1,\eta_2,\cdots,\eta_n\)是线性空间\(V\)的两个基。若
\begin{equation*} \left\{\begin{array}{c} \eta_1=a_{11}\xi_1+a_{21}\xi_2+\cdots+a_{n1}\xi_n\\ \eta_2=a_{12}\xi_1+a_{22}\xi_2+\cdots+a_{n2}\xi_n\\ \cdots\\ \eta_n=a_{1n}\xi_1+a_{2n}\xi_2+\cdots+a_{nn}\xi_n\\ \end{array}\right. , \end{equation*}
\begin{equation*} (\eta_1,\eta_2,\cdots,\eta_n)=(\xi_1,\xi_2,\cdots,\xi_n)A, \end{equation*}
则称
\begin{equation*} A=\left(\begin{array}{cccc} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{array}\right) \end{equation*}
是基\(\xi_1,\xi_2,\cdots,\xi_n\)到基\(\eta_1,\eta_2,\cdots,\eta_n\)过渡矩阵

3.3.11.

\(\mathbb{F}_3\)中, 已知
\begin{equation*} \begin{array}{l} {\xi_1} = (1,0, - 1),{\xi_2} = (2,1,1),{\xi_3} = (1,1,1);\\ {\eta_1} = (1,2,1),{\eta_2} = (1,2,0),{\eta_3} = (1,0,0). \end{array} \end{equation*}
求从基\(\xi_1,\xi_2,\xi_3\)\(\eta_1,\eta_2,\eta_3\)的过渡矩阵。

3.3.12.

\begin{equation*} \xi_1=\left(\begin{array}{cc} 1&1\\0&1 \end{array}\right),\xi_2=\left(\begin{array}{cc} 2&1\\3&1 \end{array}\right),\xi_3=\left(\begin{array}{cc} 1&1\\0&0 \end{array}\right),\xi_4=\left(\begin{array}{cc} 0&1\\-1&-1 \end{array}\right), \end{equation*}
证明:\(\xi_1,\xi_2,\xi_3,\xi_4\)\(\mathbb{R}^{2\times 2}\)的一个基。
\(\xi_1,\xi_2,\cdots,\xi_n\)\(\eta_1,\eta_2,\cdots,\eta_n\)是线性空间\(V\)的两个基,且
\begin{equation*} (\eta_1,\eta_2,\cdots,\eta_n)=(\xi_1,\xi_2,\cdots,\xi_n)A, \end{equation*}
\(\alpha\in V\)在基\(\xi_1,\xi_2,\cdots,\xi_n\)\(\eta_1,\eta_2,\cdots,\eta_n\)下的坐标分别为\(X,Y\),即
\begin{equation*} \alpha=(\xi_1,\xi_2,\cdots,\xi_n)X,\ \ \alpha=(\eta_1,\eta_2,\cdots,\eta_n)Y, \end{equation*}
\begin{equation*} \alpha=[(\xi_1,\xi_2,\cdots,\xi_n)A]Y=(\xi_1,\xi_2,\cdots,\xi_n)(AY). \end{equation*}
因此,
\begin{equation*} X=AY. \end{equation*}

3.3.14.

\begin{equation*} \xi_1=\left(\begin{array}{cc} 1&1\\0&1 \end{array}\right),\xi_2=\left(\begin{array}{cc} 2&1\\3&1 \end{array}\right),\xi_3=\left(\begin{array}{cc} 1&1\\0&0 \end{array}\right),\xi_4=\left(\begin{array}{cc} 0&1\\-1&-1 \end{array}\right), \end{equation*}
\(\alpha=\left(\begin{array}{cc} 1&0\\0&0 \end{array}\right)\)在基\(\xi_1,\xi_2,\xi_3,\xi_4\)下的坐标。

练习 3.3.2 练习

1.

\(\mathbb{F}_3\)中,求向量\(\alpha=(a_1,a_2,a_3)\)在基
\begin{equation*} \xi_1=(1,0,1),\xi_2=(0,1,0),\xi_3=(1,0,-1) \end{equation*}
下的坐标。
解答.
因为
\begin{equation*} \alpha=\frac{a_1+a_3}{2}\xi_1+a_2\xi_2+\frac{a_1-a_3}{2}\xi_3, \end{equation*}
所以\(\alpha\)在基\(\xi_1,\xi_2,\xi_3\)下的坐标为\(\displaystyle (\frac{a_1+a_3}{2},a_2,\frac{a_1-a_3}{2})^T\)

2.

\(\mathbb{F}^{2\times 2}\)中,设
\begin{equation*} A_1=\left(\begin{array}{cc} 1&2\\-1&0 \end{array}\right),A_2=\left(\begin{array}{cc} 1&-1\\1&1 \end{array}\right),A_3=\left(\begin{array}{cc} -1&2\\1&1 \end{array}\right),A_4=\left(\begin{array}{cc} -1&-1\\0&1 \end{array}\right), \end{equation*}
\begin{equation*} B_1=\left(\begin{array}{cc} 2&1\\0&1 \end{array}\right),B_2=\left(\begin{array}{cc} 0&1\\2&2 \end{array}\right),B_3=\left(\begin{array}{cc} -2&1\\1&2 \end{array}\right),B_4=\left(\begin{array}{cc} 1&3\\1&2 \end{array}\right). \end{equation*}
求基\(A_1,A_2,A_3,A_4\)到基\(B_1,B_2,B_3,B_4\)的过渡矩阵,并求\(A=\left(\begin{array}{cc} 0&-3\\2&1 \end{array}\right)\)在这两个基下的坐标。
解答.
由于\(E_{11},E_{12},E_{21},E_{22}\)\(\mathbb{F}^{2\times 2}\)的一个基,所以
\begin{equation*} \begin{array}{c} (A_1,A_2,A_3,A_4)=(E_{11},E_{12},E_{21},E_{22})B,\\(B_1,B_2,B_3,B_4)=(E_{11},E_{12},E_{21},E_{22})C,\end{array} \end{equation*}
其中\(B=\left(\begin{array}{cccc} 1&1&-1&-1\\2&-1&2&-1\\-1&1&1&0\\0&1&1&1 \end{array}\right),C=\left(\begin{array}{cccc} 2&0&-2&1\\1&1&1&3\\0&2&1&1\\1&2&2&2 \end{array}\right)\)。 则\((B_1,B_2,B_3,B_4)=(A_1,A_2,A_3,A_4)(B^{-1}C)\)
\begin{equation*} (B,C)=\left(\begin{array}{cccccccc} 1&1&-1&-1&2&0&-2&1\\2&-1&2&-1&1&1&1&3\\-1&1&1&0&0&2&1&1\\0&1&1&1&1&2&2&2 \end{array}\right)\rightarrow\left(\begin{array}{cccccccc} 1&0&0&0&1&0&0&1\\0&1&0&0&1&1&0&1\\0&0&1&0&0&1&1&1\\0&0&0&1&0&0&1&0 \end{array}\right) \end{equation*}
故基\(A_1,A_2,A_3,A_4\)到基\(B_1,B_2,B_3,B_4\)的过渡矩阵为
\begin{equation*} B^{-1}C=\left(\begin{array}{cccc} 1&0&0&1\\1&1&0&1\\0&1&1&1\\0&0&1&0 \end{array}\right). \end{equation*}
\(A\)在基\(A_1,A_2,A_3,A_4\)\(B_1,B_2,B_3,B_4\)下的坐标分别为
\begin{equation*} B^{-1}\left(\begin{array}{c}0\\-3\\2\\1\end{array}\right)=\left(\begin{array}{c}-1\\1\\0\\0\end{array}\right),\ C^{-1}\left(\begin{array}{c}0\\-3\\2\\1\end{array}\right)=\left(\begin{array}{c}1\\2\\0\\-2\end{array}\right). \end{equation*}

3.

\(\alpha_1,\alpha_2,\cdots ,\alpha_n\)\(n\)维线性空间\(V\)的一个基。
  1. 证明:\(\alpha_1,\alpha_1+\alpha_2,\cdots ,\alpha_1+\alpha_{2}+\cdots +\alpha_{n}\)也是\(V\)的一个基;
  2. 若向量\(\alpha\)在基\(\alpha_1,\alpha_2,\cdots ,\alpha_n\)下的坐标为\((n,n-1,\cdots ,2,1)^T\),求\(\alpha\)在基\(\alpha_1,\alpha_1+\alpha_2,\cdots ,\alpha_1+\alpha_{2}+\cdots +\alpha_{n}\)下的坐标。
解答.
  1. 因为
    \begin{equation*} (\alpha_1,\alpha_1+\alpha_2,\cdots ,\alpha_1+\alpha_{2}+\cdots +\alpha_{n})=(\alpha_1,\alpha_2,\cdots ,\alpha_n)P, \end{equation*}
    其中
    \begin{equation*} P=\begin{pmatrix} 1&1&\cdots&1\\ 0&1&\cdots&1\\ \vdots&\vdots&&\vdots\\ 0&0&\cdots&1 \end{pmatrix} \end{equation*}
    是可逆矩阵,且\(\alpha_1,\alpha_2,\cdots ,\alpha_n\)\(n\)维线性空间\(V\)的一个基,故向量组\(\alpha_1,\alpha_1+\alpha_2,\cdots ,\alpha_1+\alpha_{2}+\cdots +\alpha_{n}\)也是\(V\)的一个基。
  2. \(\alpha\)在基\(\alpha_1,\alpha_2,\cdots ,\alpha_n\)下的坐标为\((n,n-1,\cdots ,2,1)^T\),所以向量\(\alpha\)在基\(\alpha_1,\alpha_1+\alpha_2,\cdots ,\alpha_1+\alpha_{2}+\cdots +\alpha_{n}\)下的坐标为
    \begin{equation*} P^{-1}(n,n-1,\cdots ,2,1)^T=(1,1,\cdots ,1)^T. \end{equation*}

4.

\(\alpha_1,\alpha_2,\cdots ,\alpha_n\)\(n\)维线性空间\(V\)的一个基,\(\alpha_{n+1}\in V\)满足
\begin{equation*} \alpha_1+\alpha_2+\cdots +\alpha_n+\alpha_{n+1}=0. \end{equation*}
  1. 证明:对任意\(1\leq i\leq n+1\)\(\alpha_1,\cdots ,\alpha_{i-1},\alpha_{i+1},\cdots ,\alpha_{n+1}\)都构成\(V\)的基;
  2. 若向量\(\alpha\)在基\(\alpha_1,\alpha_2,\cdots ,\alpha_n\)下的坐标为\((a_1,a_2,\cdots ,a_n)^T\),求\(\alpha\)在基\(\alpha_1,\cdots ,\alpha_{i-1},\alpha_{i+1},\cdots ,\alpha_{n+1}\)下的坐标;
  3. 证明:\(\forall\alpha\in V\),在\((1)\)\(n+1\)组基中,必存在一组基使得\(\alpha\)在此基下的坐标分量均非负。
解答.
  1. 因为
    \begin{equation*} (\alpha_1,\cdots ,\alpha_{i-1},\alpha_{i+1},\cdots ,\alpha_{n+1})=(\alpha_1,\alpha_2,\cdots ,\alpha_n)P, \end{equation*}
    其中\(\alpha_1,\alpha_2,\cdots ,\alpha_n\)是线性空间\(V\)的一个基且
    \begin{equation*} P=\begin{pmatrix} 1&&&&&&-1\\ &\ddots&&&&&\vdots\\ &&1&&&&-1\\ &&&0&&&-1\\ &&&1&&&-1\\ &&&&\ddots&&\vdots\\ &&&&&1&-1 \end{pmatrix} \end{equation*}
    可逆,所以\(\alpha_1,\cdots ,\alpha_{i-1},\alpha_{i+1},\cdots ,\alpha_{n+1}\)\(V\)的基。
  2. \(\alpha\) 在基\(\alpha_1,\cdots ,\alpha_{i-1},\alpha_{i+1},\cdots ,\alpha_{n+1}\)下的坐标为
    \begin{equation*} P^{-1} (a_1,a_2,\cdots,a_n)^T=(a_1-a_i,\cdots,a_{i-1}-a_i,a_{i+1}-a_i,\cdots,a_n-a_i,-a_i)^T. \end{equation*}
  3. \(\alpha\)在基\(\alpha_1,\alpha_2,\cdots ,\alpha_n\)下的坐标为\((a_1,a_2,\cdots ,a_n)^T\)
    • 若对\(\forall 1\leq i\leq n\),都有\(a_i\geq 0\),则\(\alpha\)在基\(\alpha_1,\alpha_2,\cdots ,\alpha_n\)下的坐标分量均非负。
    • 若存在\(1\leq k\leq n\),使得\(a_k< 0\),则\(\min\{a_1,a_2,\cdots ,a_n\}<0\)。假设
      \begin{equation*} a_i=\min\{a_1,a_2,\cdots ,a_n\}, \end{equation*}
      \(a_i<0\)且当\(j\neq i\)时,\(a_j-a_i\geq 0\)。故\(\alpha\) 在基
      \begin{equation*} \alpha_1,\cdots ,\alpha_{i-1},\alpha_{i+1},\cdots ,\alpha_{n+1} \end{equation*}
      下的坐标
      \begin{equation*} (a_1-a_i,\cdots,a_{i-1}-a_i,a_{i+1}-a_i,\cdots,a_n-a_i,-a_i)^T, \end{equation*}
      其坐标分量均非负。

5.

\(\mathbb{F}^3\)中,设
\begin{equation*} \begin{array}{c} \alpha_1=(1,0,0)^T,\alpha_2=(0,1,0)^T,\alpha_3=(0,0,1)^T,\\ \beta_1=(1,2,2)^T,\beta_2=(1,2,1)^T,\beta_3=(-1,-3,-2)^T. \end{array} \end{equation*}
求一个非零向量\(\xi\),使得它在基\(\alpha_1,\alpha_2,\alpha_3\)\(\beta_1,\beta_2,\beta_3\)下有相同的坐标。
解答.
\begin{equation*} (\beta_1,\beta_2,\beta_3)=(\alpha_1,\alpha_2,\alpha_3)A, \end{equation*}
其中
\begin{equation*} A=\left(\begin{array}{ccc} 1&1&-1\\2&2&-3\\2&1&-2 \end{array}\right). \end{equation*}
设非零向量\(\xi=\left(\begin{array}{c} x_1\\x_2\\x_3 \end{array}\right)\)在基\(\alpha_1,\alpha_2,\alpha_3\)\(\beta_1,\beta_2,\beta_3\)下有相同的坐标。
由于\(\xi\)在基\(\alpha_1,\alpha_2,\alpha_3\)\(\beta_1,\beta_2,\beta_3\)下的坐标分别为
\begin{equation*} \left(\begin{array}{c} x_1\\x_2\\x_3 \end{array}\right),\ A^{-1}\left(\begin{array}{c} x_1\\x_2\\x_3 \end{array}\right), \end{equation*}
所以\(\left(\begin{array}{c} x_1\\x_2\\x_3 \end{array}\right)=A^{-1}\left(\begin{array}{c} x_1\\x_2\\x_3 \end{array}\right)\),即\(A\left(\begin{array}{c} x_1\\x_2\\x_3 \end{array}\right)=\left(\begin{array}{c} x_1\\x_2\\x_3 \end{array}\right)\),则\((A-E)\left(\begin{array}{c} x_1\\x_2\\x_3 \end{array}\right)=0\)
\begin{equation*} A-E=\left(\begin{array}{ccc} 0&1&-1\\2&1&-3\\2&1&-3 \end{array}\right)\rightarrow\left(\begin{array}{ccc} 1&0&-1\\0&1&-1\\0&0&0 \end{array}\right), \end{equation*}
所以,\(\xi=c\left(\begin{array}{c} 1\\1\\1 \end{array}\right)\),其中\(c\)为数域\(\mathbb{F}\)上任意非零常数。

6.

在数域\(\mathbb{F}\)的所有\(2\)阶对称矩阵构成的线性空间\(V\)中,将\(A_1=\left(\begin{array}{cc} 1&-1\\-1&1 \end{array}\right),A_2=\left(\begin{array}{cc} 2&-2\\-2&1 \end{array}\right)\)扩充成\(V\)的一个基。
解答.
\(E_{11},E_{12}+E_{21},E_{22}\)\(V\)的一个基,\(\dim V=3\), 由于\(A_1,A_2,E_{11}\)(或\(A_1,A_2,E_{12}+E_{21}\))线性无关, 所以\(A_1,A_2\)扩充成\(V\)的一个基\(A_1,A_2,E_{11}\)(或\(A_1,A_2,E_{12}+E_{21}\))。