\$2.4 初等行变换和初等矩阵

高等代数 https://gdfzu.club

Outline

- ① Gauss 消去法与行初等变换
- ② 初等矩阵与矩阵乘法

③ 用初等行变换/矩阵化简矩阵

Gauss 消去法的矩阵表示

• 线性方程组 $AX = \beta$

Gauss 消去法的矩阵表示

• 线性方程组 $AX = \beta \Leftrightarrow$ 增广矩阵 $(A|\beta)$

Gauss 消去法的矩阵表示

• 线性方程组 $AX = \beta \Leftrightarrow$ 增广矩阵 $(A|\beta)$

例 1

通过增广矩阵化简求线性方程组

$$\begin{cases} x + 2y = 4, \\ x - y = 1. \end{cases}$$

定义 1.1

矩阵的下列三种变换称为行初等变换指:

定义 1.1

矩阵的下列三种变换称为行初等变换指:

● 行互换变换: 互换矩阵中的两行的位置;

定义 1.1

矩阵的下列三种变换称为行初等变换指:

- 行互换变换: 互换矩阵中的两行的位置;
- ② 行倍法变换: 用一个非零数 c 乘矩阵的一行;

定义 1.1

矩阵的下列三种变换称为行初等变换指:

- 行互换变换: 互换矩阵中的两行的位置;
- ② 行倍法变换:用一个非零数 c 乘矩阵的一行;
- ❸ 行消法变换:将矩阵的某一行乘以 c 加到另一行上去。

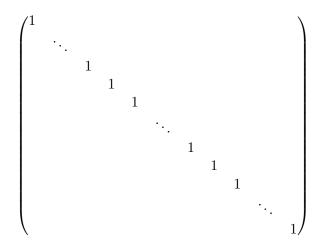
定义 1.1

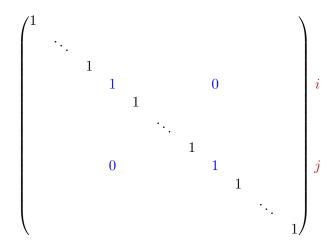
矩阵的下列三种变换称为行初等变换指:

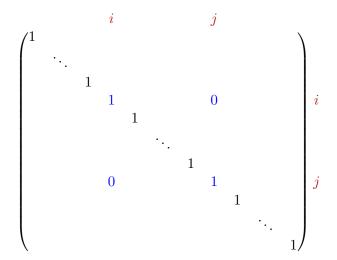
- 行互换变换: 互换矩阵中的两行的位置;
- ② 行倍法变换:用一个非零数 c 乘矩阵的一行;
- ❸ 行消法变换:将矩阵的某一行乘以 c 加到另一行上去。

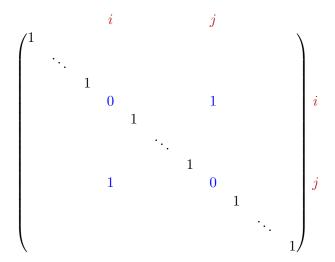
定义 1.2

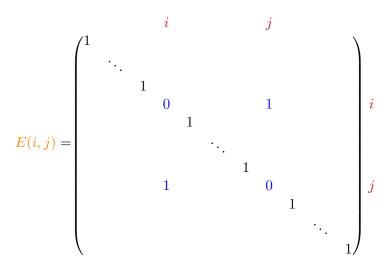
对单位矩阵做一次行初等变换得到的矩阵称为初等矩阵。







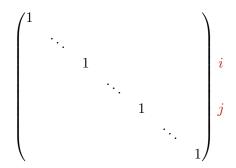




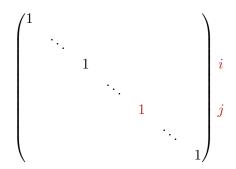
倍法矩阵

• 非零常数c 乘以单位矩阵的第 i 行(列)

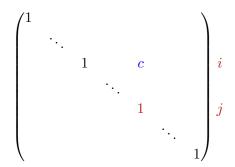
• 行变换: 将第j 行乘以常数 c 加到第i 行。



• 行变换: 将第 j 行乘以常数 c 加到第 i 行。



• 行变换:将第j行乘以常数c加到第i行。



• 行变换: 将第j 行乘以常数 c 加到第i 行。

• 行变换:将第j行乘以常数c加到第i行。

Outline

① Gauss 消去法与行初等变换

2 初等矩阵与矩阵乘法

③ 用初等行变换/矩阵化简矩阵

初等矩阵与矩阵乘法

例 2

设
$$A = \begin{pmatrix} 2 & 5 & -1 \\ 1 & 2 & 3 \\ 4 & 7 & 5 \end{pmatrix}$$
,计算 $E(1,3)A, E(2(-1))A, E(1,2(-3))A$ 。

初等矩阵与矩阵乘法

例 2

设
$$A = \begin{pmatrix} 2 & 5 & -1 \\ 1 & 2 & 3 \\ 4 & 7 & 5 \end{pmatrix}$$
,计算 $E(1,3)A, E(2(-1))A, E(1,2(-3))A$ 。

定理 2.1

设 A 是任意给定的一个 $n \times m$ 阶矩阵。则对 A 做一次初等行变换等价于 Δm 开放的初等矩阵。

例子

例 2.1

求 $E(1,3)^{2025}AE(1,3(1))$, 其中

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ -1 & 0 & 1 & 2 \end{pmatrix}$$

Outline

① Gauss 消去法与行初等变换

② 初等矩阵与矩阵乘法

③ 用初等行变换/矩阵化简矩阵

定义 3.1

设 A 是一个矩阵。对 A 的每一个元素不全为 0 的行,称该行从左起第一个非 0 元为一个主元。

定义 3.1

设 A 是一个矩阵。对 A 的每一个元素不全为 0 的行,称该行从左起第一个非 0 元为一个主元。若矩阵 A 满足条件:

则称矩阵 A 为阶梯形矩阵,或称为行阶梯形矩阵。

定义 3.1

设 A 是一个矩阵。对 A 的每一个元素不全为 0 的行,称该行从左起第一个非 0 元为一个主元。若矩阵 A 满足条件:

■ 对于每一个元素不全为 0 的行, 主元的列指标随行指标的增大严格增加;

则称矩阵 A 为阶梯形矩阵, 或称为行阶梯形矩阵。

定义 3.1

设 A 是一个矩阵。对 A 的每一个元素不全为 0 的行,称该行从左起第一个非 0 元为一个主元。若矩阵 A 满足条件:

- 对于每一个元素不全为 0 的行,主元的列指标随行指标的增大严格增加;
- ② 元素全为 0 的行下方(若存在)必定都是 0,即全 0 行集中在矩阵的底部;

则称矩阵 A 为阶梯形矩阵,或称为行阶梯形矩阵。

定义 3.1

设 A 是一个矩阵。对 A 的每一个元素不全为 0 的行,称该行从左起第一个非 0 元为一个主元。若矩阵 A 满足条件:

- 对于每一个元素不全为 0 的行,主元的列指标随行指标的增大严格增加;
- ② 元素全为 0 的行下方(若存在)必定都是 0,即全 0 行集中在矩阵的底部;

则称矩阵 A 为阶梯形矩阵,或称为行阶梯形矩阵。

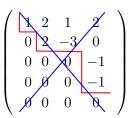
• 0 矩阵都是阶梯型矩阵。

$$\left(\begin{array}{ccccc}
1 & 2 & 1 & 2 \\
0 & 2 & -3 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\left(\begin{array}{cccccc}
1 & 2 & 1 & 2 \\
0 & 2 & -3 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)$$

$$\left(\begin{array}{ccc|c} 1 & 2 & 1 & 2 \\ 0 & 2 & -3 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \quad \left(\begin{array}{cccc|c} 1 & 2 & 1 & 2 \\ 0 & 2 & -3 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\left(\begin{array}{ccccc}
1 & 2 & 1 & 2 \\
0 & 2 & -3 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\left(\begin{array}{cccccc}
1 & 2 & 1 & 2 \\
0 & 2 & -3 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)$$

$$\begin{pmatrix}
1 & 2 & 1 & 2 \\
0 & 2 & -3 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$



阶梯型线性方程组

例 3

求解线性方程组

$$\begin{cases} x_1 + 2x_2 + x_3 + 2x_4 &= 1, \\ 2x_2 - 3x_3 + x_4 &= 2, \\ x_3 + x_4 &= 0. \end{cases}$$

Gauss 消去法的矩阵描述

定理 3.1

设 A 是任意一个给定的矩阵,则存在初等矩阵 P_1, \ldots, P_k ,使得 $P_k \cdots P_1 A$ 是阶梯形矩阵。

Gauss 消去法的矩阵描述

定理 3.1

设 A 是任意一个给定的矩阵,则存在初等矩阵 P_1, \ldots, P_k ,使得 $P_k \cdots P_1 A$ 是阶梯形矩阵。

例 4

用行初等变换将矩阵

$$A = \begin{pmatrix} 3 & -2 & -7 & 4 \\ 1 & 2 & -3 & 1 \\ 2 & 8 & -7 & 3 \end{pmatrix}$$

化为阶梯形矩阵。