\$1.3 最大公因式和辗转相除法

高等代数 https://gdfzu.club

提纲

- ① 最大公因式
- 2 互素
- 3 最小公倍式
- 4 孙子定理*

定义 1.1

设 $f(x), g(x) \in \mathbb{F}[x]$, 若 $d(x) \in \mathbb{F}[x]$ 使得

则称 d(x) 是 f(x) 与 g(x) 的最大公因式。

定义 1.1

设 $f(x), g(x) \in \mathbb{F}[x]$, 若 $d(x) \in \mathbb{F}[x]$ 使得

则称 d(x) 是 f(x) 与 g(x) 的最大公因式。

定义 1.1

设 $f(x), g(x) \in \mathbb{F}[x]$, 若 $d(x) \in \mathbb{F}[x]$ 使得

- 0 $d(x)|f(x) \perp d(x)|g(x);$
- ② 若 h(x)|f(x) 且 h(x)|g(x), 则 h(x)|d(x);

则称 d(x) 是 f(x) 与 g(x) 的最大公因式。

定义 1.1

设 $f(x), g(x) \in \mathbb{F}[x]$, 若 $d(x) \in \mathbb{F}[x]$ 使得

- 0 $d(x)|f(x) \perp d(x)|g(x);$
- ② 若 h(x)|f(x) 且 h(x)|g(x), 则 h(x)|d(x);

则称 d(x) 是 f(x) 与 g(x) 的最大公因式。

• d(x) 是 f(x)、g(x) 的次数最高的公因式。

求
$$(x-1)^3(x+2)x$$
 与 $(x-1)^2(x+2)^5(x+3)$ 的最大公因式。

例 1

求
$$(x-1)^3(x+2)x$$
 与 $(x-1)^2(x+2)^5(x+3)$ 的最大公因式。

例 2

 $\forall 0 \neq c \in \mathbb{F}$, 求 f(x) 与 c 的最大公因式。

例 1

求
$$(x-1)^3(x+2)x$$
 与 $(x-1)^2(x+2)^5(x+3)$ 的最大公因式。

例 2

$$\forall 0 \neq c \in \mathbb{F}$$
, 求 $f(x)$ 与 c 的最大公因式。

例 3

求 f(x) 与 0 的最大公因式。

• 最大公因式不是唯一的。

• 最大公因式不是唯一的。

• f(x) 和 g(x) 的最大公因式最多差一个非零常数(在相伴意义下是唯一的)。

• 最大公因式不是唯一的。

• f(x) 和 g(x) 的最大公因式最多差一个非零常数(在相伴意义下是唯一的)。

• f(x), g(x) 首项系数为 1(简称首一) 的最大公因式是唯一确定的,记为 d(x) = g.c.f(f(x), g(x)),

• 最大公因式不是唯一的。

• f(x) 和 g(x) 的最大公因式最多差一个非零常数(在相伴意义下是唯一的)。

• f(x), g(x) 首项系数为 1(简称首一) 的最大公因式是唯一确定的,记为 d(x) = g.c.f(f(x), g(x)),或简记为 d(x) = (f(x), g(x))。

例 4

 \bullet (f(x), 2);

- \bullet (f(x), 2);
- ② (f(x),0), 其中 $f(x) \neq 0$;

- \bullet (f(x), 2);
- ② (f(x),0), 其中 $f(x) \neq 0$;
- **3** (2,6);

- **1** (f(x),2);
- ② (f(x),0), 其中 $f(x) \neq 0$;
- (2,6);
- $(x^4 + x^3 3x^2 4x 1, x^3 + x^2 x 1)_{\circ}$

引理 1.1

设 $f(x), g(x) \in \mathbb{F}[x]_{\circ}$

引理 1.1

设 $f(x), g(x) \in \mathbb{F}[x]$ 。

• 若 g(x)|f(x), 则 (f(x),g(x)) = cg(x);

引理 1.1

设 $f(x), g(x) \in \mathbb{F}[x]$ 。

- **①** 若 g(x)|f(x), 则 (f(x),g(x)) = cg(x);
- ② 对任意 $l(x) \in \mathbb{F}[x]$, 成立

$$(f(x),g(x))=(f(x)+l(x)g(x),g(x))$$

引理 1.1

设 $f(x), g(x) \in \mathbb{F}[x]$ 。

- **①** 若 g(x)|f(x), 则 (f(x),g(x)) = cg(x);
- ② 对任意 $l(x) \in \mathbb{F}[x]$, 成立

$$(f(x), g(x)) = (f(x) + l(x)g(x), g(x))$$

• 若 f(x) = g(x)q(x) + r(x), 则 (f(x), g(x)) = (g(x), r(x))。

引理 1.1

设 $f(x), g(x) \in \mathbb{F}[x]$ 。

- **①** 若 g(x)|f(x), 则 (f(x),g(x)) = cg(x);
- ② 对任意 $l(x) \in \mathbb{F}[x]$, 成立

$$(f(x),g(x)) = (f(x) + l(x)g(x),g(x))$$

• <math><math>f(x) = g(x)q(x) + r(x), <math><math><math><math><math><math>f(x), g(x)) = (g(x), r(x))<math><math>6 <math>7 7 <math>7 7 <math>7 7 <math>7 <math>7 <math>7 <math>7 <math>7 <math>7 <math>7 <math>7 7 <math>7 7 <math>7 <math>7 <math>7 <math>7 <math>7 <math>7 <math>7 7 7 <math>7 <math>7 <math>7 <math>7 <math>7 <math>7 <math>7 <math>7 7 <math>7 7 <math>7 <math>7 <math>7 7 <math>7 <math>7 7 7 7 7 7 7 <math>7 7

定理 1.1 (裴蜀定理)

设 $f(x),g(x)\in\mathbb{F}[x]$,则存在 $d(x)\in\mathbb{F}[x]$,使得 (f(x),g(x))=d(x),且存在 $u(x),v(x)\in\mathbb{F}[x]$,使

$$d(x) = f(x)u(x) + g(x)v(x)$$

说明

• 注: 证明方法即是计算方法,最大公因式相伴于 Euclidean 辗转相 除中最后一个非零的余式。

说明

- 注: 证明方法即是计算方法,最大公因式相伴于 Euclidean 辗转相 除中最后一个非零的余式。
- 思考: 定理中的 u(x), v(x) 唯一么?

说明

- 注: 证明方法即是计算方法,最大公因式相伴于 Euclidean 辗转相 除中最后一个非零的余式。
- 思考: 定理中的 u(x), v(x) 唯一么?
- 思考: 设 $f(x), g(x), d(x) \in \mathbb{F}[x]$, 且 d(x) 的首项系数为 1。如果存在 $u(x), v(x) \in \mathbb{F}[x]$,使得

$$d(x) = f(x)u(x) + g(x)v(x)$$

问: d(x) = (f(x), g(x))?

定理 1.2

d(x) 是 f(x), g(x) 的最大公因子等价于

定理 1.2

d(x) 是 f(x), g(x) 的最大公因子等价于

定理 1.2

d(x) 是 f(x), g(x) 的最大公因子等价于

- ② $\exists u(x), v(x) \in \mathbb{F}[x]$, 使得

$$d(x) = u(x)f(x) + v(x)g(x).$$

定理 1.2

d(x) 是 f(x), g(x) 的最大公因子等价于

- ② $\exists u(x), v(x) \in \mathbb{F}[x]$, 使得

$$d(x) = u(x)f(x) + v(x)g(x).$$

● 思考: 最大公因式与数域扩大有关吗?

多个多项式的最大公因式

定义 1.2

对 m 个多项式 $f_i(x) \in \mathbb{F}[x] (i=1,2,\ldots,m)$, 若存在 $d(x) \in \mathbb{F}[x]$, 使得

则称 d(x) 是 $f_i(x)(i=1,2,\ldots,m)$ 的最大公因式,其中首一的最大公因式记为:

$$(f_1(x), f_2(x), \ldots, f_m(x))$$

多个多项式的最大公因式

定义 1.2

对 m 个多项式 $f_i(x) \in \mathbb{F}[x] (i = 1, 2, ..., m)$,若存在 $d(x) \in \mathbb{F}[x]$,使得 $d(x)|f_i(x)(i = 1, 2, ..., m)$;

则称 d(x) 是 $f_i(x)(i=1,2,\ldots,m)$ 的最大公因式,其中首一的最大公因式记为:

$$(f_1(x), f_2(x), \dots, f_m(x))$$

多个多项式的最大公因式

定义 1.2

对 m 个多项式 $f_i(x) \in \mathbb{F}[x](i=1,2,\ldots,m)$, 若存在 $d(x) \in \mathbb{F}[x]$, 使得

- 0 $d(x)|f_i(x)(i=1,2,\ldots,m);$

则称 d(x) 是 $f_i(x)(i=1,2,\ldots,m)$ 的最大公因式, 其中首一的最大公因式记为:

$$(f_1(x), f_2(x), \dots, f_m(x))$$

逐项求公因式

命题 1.1

设 $f(x), g(x), h(x) \in \mathbb{F}[x]$, 则

$$(f(x), g(x), h(x)) = (f(x), g(x)), h(x))$$

= $(f(x), (g(x), h(x)))$

逐项求公因式

命题 1.1

设 $f(x), g(x), h(x) \in \mathbb{F}[x]$, 则

$$(f(x), g(x), h(x)) = (f(x), g(x)), h(x))$$

= $(f(x), (g(x), h(x)))$

▼ 求多个多项式的最大公因式可先求任意两个多项式的最大公因式, 再用同样方法继续,而不必顾及先后顺序。

逐项求公因式

命题 1.1

设 $f(x), g(x), h(x) \in \mathbb{F}[x]$, 则

$$(f(x), g(x), h(x)) = (f(x), g(x)), h(x))$$

= $(f(x), g(x), h(x))$

▼求多个多项式的最大公因式可先求任意两个多项式的最大公因式, 再用同样方法继续,而不必顾及先后顺序。

求
$$((x+1)^3,(x+1)(x+2),x+2)$$
。

提纲

- 1 最大公因式
- 2 互素
- 3 最小公倍式
- 4 孙子定理*

定义 2.1

设 $f(x), g(x) \in \mathbb{F}[x]$,若 (f(x), g(x)) = 1,则称 f(x) 与 g(x) 五素或互质。

定义 2.1

设 $f(x), g(x) \in \mathbb{F}[x]$,若 (f(x), g(x)) = 1,则称 f(x) 与 g(x) 互素或互质。

定理 2.1

设 $f(x), g(x) \in \mathbb{F}[x]$, 则 f(x), g(x) 互素的充要条件是存在 $u(x), v(x) \in \mathbb{F}[x]$, 使得

$$f(x)u(x) + g(x)v(x) = 1.$$

定义 2.1

设 $f(x), g(x) \in \mathbb{F}[x]$,若 (f(x), g(x)) = 1,则称 f(x) 与 g(x) 互素或互质。

定理 2.1

设 $f(x), g(x) \in \mathbb{F}[x]$, 则 f(x), g(x) 互素的充要条件是存在 $u(x), v(x) \in \mathbb{F}[x]$, 使得

$$f(x)u(x) + g(x)v(x) = 1.$$

• 注 一般的若仅有 d(x) = f(x)u(x) + g(x)v(x),并不能保证 d(x) = (f(x), g(x))。 但若 u(x)f(x) + v(x)g(x) = 1,就确保 (f(x), g(x)) = 1。

定义 2.1

设 $f(x),g(x)\in\mathbb{F}[x]$,若 (f(x),g(x))=1,则称 f(x) 与 g(x) 互素或互质。

定理 2.1

设 $f(x), g(x) \in \mathbb{F}[x]$, 则 f(x), g(x) 互素的充要条件是存在 $u(x), v(x) \in \mathbb{F}[x]$, 使得

$$f(x)u(x) + g(x)v(x) = 1.$$

- 注 一般的若仅有 d(x) = f(x)u(x) + g(x)v(x),并不能保证 d(x) = (f(x), g(x))。 但若 u(x)f(x) + v(x)g(x) = 1,就确保 (f(x), g(x)) = 1。
- 思考: 互素与数域扩大有关吗?

定义 2.1

设 $f(x), g(x) \in \mathbb{F}[x]$,若 (f(x), g(x)) = 1,则称 f(x) 与 g(x) 五素或互质。

定理 2.1

设 $f(x), g(x) \in \mathbb{F}[x]$, 则 f(x), g(x) 互素的充要条件是存在 $u(x), v(x) \in \mathbb{F}[x]$, 使得

$$f(x)u(x) + g(x)v(x) = 1.$$

- 注 一般的若仅有 d(x) = f(x)u(x) + g(x)v(x),并不能保证 d(x) = (f(x), g(x))。 但若 u(x)f(x) + v(x)g(x) = 1,就确保 (f(x), g(x)) = 1。
- 思考: 互素与数域扩大有关吗?
- 思考: 若 f(x), g(x), h(x) 两两互素,则 (f(x), g(x), h(x)) = 1。反之是否成立?

例子

例 6

设 $a,b \in \mathbb{F}$, $a \neq b$, 则

$$(x-a, x-b) = 1.$$

例子

例 6

设 $a, b \in \mathbb{F}$, $a \neq b$, 则

$$(x-a, x-b) = 1.$$

例 7

设 $f(x), g(x) \in \mathbb{F}[x]$, 且 (f(x), g(x)) = 1。证明对任意自然数 m

$$(f(x^m), g(x^m)) = 1.$$

推论

推论 2.1

设 $f_1(x)|g(x)$, $f_2(x)|g(x)$, 且 ($f_1(x),f_2(x)$) = 1, 则 $f_1(x)f_2(x)|g(x)$ 。

推论

推论 2.1

设 $f_1(x)|g(x)$, $f_2(x)|g(x)$, 且 ($f_1(x),f_2(x)$) = 1, 则 $f_1(x)f_2(x)|g(x)$ 。

推论 2.2

设
$$f(x)|g(x)h(x)$$
,且 ($f(x),g(x)$) = 1,则
$$f(x)|h(x).$$

推论 2.3

设
$$(f_1(x),g(x))=1$$
, $(f_2(x),g(x))=1$, 则
$$(f_1(x)f_2(x),g(x))=1.$$

推论 2.3

设 (
$$f_1(x), g(x)$$
) = 1, ($f_2(x), g(x)$) = 1, 则
$$(f_1(x)f_2(x), g(x)) = 1.$$

推论 2.4

设 (f(x),g(x)) = $d(x) \neq 0$, 且 $f(x)=f_1(x)d(x)$, $g(x)=g_1(x)d(x)$, 则 ($f_1(x),g_1(x)$) = 1。

推论 2.3

设
$$(f_1(x), g(x)) = 1, (f_2(x), g(x)) = 1,$$
 则

$$(f_1(x)f_2(x),g(x)) = 1.$$

推论 2.4

设
$$(f(x),g(x))=d(x)\neq 0$$
,且 $f(x)=f_1(x)d(x)$, $g(x)=g_1(x)d(x)$,则 $(f_1(x),g_1(x))=1$ 。

推论 2.5

设
$$t(x)$$
 是首一多项式, $(f(x),g(x))=d(x)$, 则

$$(f(x)t(x), g(x)t(x)) = d(x)t(x).$$

提纲

- 1 最大公因式
- 2 互素
- 3 最小公倍式
- 4 孙子定理*

定义 3.1

设 $f(x), g(x) \in \mathbb{F}[x]$, 若 $m(x) \in \mathbb{F}[x]$, 使得

则称 m(x) 是 f(x) 与 g(x) 的最小公倍式(l.c.m.)。首一最小公倍式记作 [f(x),g(x)]。

定义 3.1

设 $f(x), g(x) \in \mathbb{F}[x]$, 若 $m(x) \in \mathbb{F}[x]$, 使得

1 $f(x)|m(x) \perp g(x)|m(x);$

则称 m(x) 是 f(x) 与 g(x) 的最小公倍式(l.c.m.)。首一最小公倍式记作 [f(x),g(x)]。

定义 3.1

设 $f(x), g(x) \in \mathbb{F}[x]$, 若 $m(x) \in \mathbb{F}[x]$, 使得

- **1** $f(x)|m(x) \perp g(x)|m(x);$
- ② 若 f(x)|l(x) 且 g(x)|l(x),则 m(x)|l(x)

则称 m(x) 是 f(x) 与 g(x) 的最小公倍式(l.c.m.)。首一最小公倍式记作 [f(x),g(x)]。

定义 3.1

设 $f(x), g(x) \in \mathbb{F}[x]$, 若 $m(x) \in \mathbb{F}[x]$, 使得

- **1** $f(x)|m(x) \perp g(x)|m(x);$
- ② 若 f(x)|l(x) 且 g(x)|l(x), 则 m(x)|l(x)

则称 m(x) 是 f(x) 与 g(x) 的最小公倍式(l.c.m.)。 首一最小公倍式记作 [f(x),g(x)]。 $f_1(x),f_2(x),\ldots,f_m(x)$ 的首一最小公倍式记为

$$[f_1(x), f_2(x), \ldots, f_m(x)].$$

提纲

- 1 最大公因式
- 2 互素
- 3 最小公倍式
- 4 孙子定理*

孙子定理/中国剩余定理

引理 4.1

设 $p_1(x), p_2(x), \cdots, p_m(x) \in \mathbb{F}[x] (m \geq 2)$ 两两互素,则存在 $f_i(x) \in \mathbb{F}[x] (i=1,2,\cdots,m)$,使得对任意 $i,j=1,2,\cdots,m$ 且 $i \neq j$,都有

$$f_i(x) = l_i(x)p_i(x) + 1, \quad f_i(x) = h_{ij}(x)p_j(x).$$

孙子定理/中国剩余定理

引理 4.1

设 $p_1(x),p_2(x),\cdots,p_m(x)\in\mathbb{F}[x](m\geq 2)$ 两两互素,则存在 $f_i(x)\in\mathbb{F}[x](i=1,2,\cdots,m)$,使得对任意 $i,j=1,2,\cdots,m$ 且 $i\neq j$,都有

$$f_i(x) = l_i(x)p_i(x) + 1, \quad f_i(x) = h_{ij}(x)p_j(x).$$

定理 4.1 (孙子定理/中国剩余定理)

设 $p_1(x), p_2(x), \cdots, p_m(x) \in \mathbb{F}[x] (m \geq 2)$ 两两互素, $g_1(x), g_2(x), \cdots, g_m(x) \in \mathbb{F}[x]$ 且 $\deg g_i(x) < \deg p_i(x)$,则存在唯一多项式 g(x),使得对任意 $i = 1, 2, \cdots, m$,有

$$g(x) = p_i(x)q_i(x) + g_i(x),$$

 $\mathbb{L} \deg g(x) < \sum_{i=1}^m \deg p_i(x)$

例子

例 8

设
$$f(x)$$
 除以 $x^2 + 1, x^2 + 2$ 的余式分别为 $4x + 4, 4x + 8$ 。求 $f(x)$ 以及 $f(x)$ 除以 $(x^2 + 1)(x^2 + 2)$ 的余式。