\$ 2.6 简化阶梯形、线性方程组的解及秩

高等代数 https://gdfzu.club

Outline

- 1 简化阶梯形矩阵
- ② 利用简化阶梯形求解线性方程组
- ③ 简化阶梯形的唯一性
- 4 矩阵的秩
- 5 再议可逆矩阵

定义 1.1

设 A 是一个 $m \times n$ 阶矩阵。若 A 满足下面 3 个条件:

定义 1.1

设 A 是一个 $m \times n$ 阶矩阵。若 A 满足下面 3 个条件:

● A 是阶梯形矩阵;

定义 1.1

设 A 是一个 $m \times n$ 阶矩阵。若 A 满足下面 3 个条件:

- A 是阶梯形矩阵;
- ② A 的主元都是 1;

定义 1.1

设 A 是一个 $m \times n$ 阶矩阵。若 A 满足下面 3 个条件:

- A 是阶梯形矩阵;
- ② A 的主元都是 1;
- ❸ A 的任意一个主元所在的列除了主元 1 外,其余元素都是 0;

定义 1.1

设 A 是一个 $m \times n$ 阶矩阵。若 A 满足下面 3 个条件:

- A 是阶梯形矩阵;
- ② A 的主元都是 1;
- ❸ A 的任意一个主元所在的列除了主元 1 外,其余元素都是 0;

则称矩阵 A 是一个简化阶梯形矩阵 (reduced row echelon form,简记为 rref)。

定理 1.1

每一个矩阵都行等价于一个简化阶梯形矩阵。

简化阶梯型的计算

例 1

用初等行变换将矩阵
$$A = \begin{pmatrix} 3 & -2 & -7 & 4 \\ 1 & 2 & -3 & 1 \\ 2 & 8 & -7 & 3 \end{pmatrix}$$
 化为简化阶梯形矩阵。

Outline

- 1 简化阶梯形矩阵
- 2 利用简化阶梯形求解线性方程组
- ③ 简化阶梯形的唯一性
- 4 矩阵的秩
- 5 再议可逆矩阵

•
$$AX = \beta \Rightarrow \tilde{A} = (A, \beta)$$

•
$$AX = \beta \Rightarrow \tilde{A} = (A, \beta)$$

$$\tilde{A} \xrightarrow{\text{\tiny \tilde{T}} \text{\tiny $\tilde{T}$$

• 若 $b'_{r+1} \neq 0$, 则无解;

- 若 $b'_{r+1} \neq 0$,则无解;
- 若 $b'_{r+1} = 0$, 对增广矩阵继续作行的初等变换

- 若 $b'_{r+1} \neq 0$,则无解;
- 若 $b'_{r+1} = 0$, 对增广矩阵继续作行的初等变换

- 若 $b'_{r+1} \neq 0$, 则无解;
- 若 $b'_{r+1} = 0$, 对增广矩阵继续作行的初等变换

$$\tilde{A} \longrightarrow \begin{pmatrix} 1 & 0 & \cdots & 0 & c_{1,r+1} & \cdots & c_{1n} & d_1 \\ 0 & 1 & \cdots & 0 & c_{2,r+1} & \cdots & c_{2n} & d_2 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & c_{r,r+1} & \cdots & c_{rn} & d_r \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

情形 1: r = n 唯一解

• 当 r=n 时,对应的阶梯形线性方程组

$$\begin{cases} x_1 & = d_1 \\ x_2 & = d_2 \\ & \cdots \\ & x_n = d_n \end{cases}$$

情形 1: r = n 唯一解

• 当 r=n 时,对应的阶梯形线性方程组

$$\begin{cases} x_1 & = d_1 \\ x_2 & = d_2 \\ & \cdots \\ & x_n = d_n \end{cases}$$

此时,线性方程组有唯一解

$$\begin{cases} x_1 = d_1 \\ x_2 = d_2 \\ \dots \\ x_n = d_n \end{cases}$$

• 当 r < n,这时阶梯形方程组可化为

• 当 r < n, 这时阶梯形方程组可化为

任意给 x_{r+1}, \dots, x_n 一组值,由 (1) 就唯一地定出 x_1, \dots, x_r 的一组值。此时方程组有无穷多个解。

• 当 r < n,这时阶梯形方程组可化为

任意给 x_{r+1}, \dots, x_n 一组值,由 (1) 就唯一地定出 x_1, \dots, x_r 的一组值。此时方程组有无穷多个解。

• 我们把 x_1, \dots, x_r 通过 x_{r+1}, \dots, x_n 表示出来的这样一组解的表达式称为该方程组的一般解。

• 当 r < n, 这时阶梯形方程组可化为

任意给 x_{r+1}, \dots, x_n 一组值,由 (1) 就唯一地定出 x_1, \dots, x_r 的一组值。此时方程组有无穷多个解。

- 我们把 x_1, \dots, x_r 通过 x_{r+1}, \dots, x_n 表示出来的这样一组解的表达式称为该方程组的一般解。
- *x_{r+1}, · · · , x_n* 称为一组自由未知量。

• 当 r < n, 这时阶梯形方程组可化为

任意给 x_{r+1}, \dots, x_n 一组值,由 (1) 就唯一地定出 x_1, \dots, x_r 的一组值。此时方程组有无穷多个解。

- 我们把 x_1, \dots, x_r 通过 x_{r+1}, \dots, x_n 表示出来的这样一组解的表达式称为该方程组的一般解。
- *x_{r+1}, · · · , x_n* 称为一组自由未知量。
- x_1, \dots, x_r 称为一组主变量。

算例

例 2

利用 Gauss-Jordan 消去法求解线性方程组:

$$\begin{cases} 3x_1 - 2x_2 - 7x_3 + 4x_4 = 0, \\ x_1 + 2x_2 - 3x_3 + x_4 = 0, \\ 2x_1 + 8x_2 - 7x_3 + 3x_4 = 0. \end{cases}$$

Outline

- 1 简化阶梯形矩阵
- ② 利用简化阶梯形求解线性方程组
- ③ 简化阶梯形的唯一性
- 4 矩阵的秩
- 5 再议可逆矩阵

简化阶梯形的唯一性

引理 3.1

设 B 和 C 都是 $m \times n$ 阶的简化阶梯形矩阵。则 BX = 0 与 CX = 0 这两个线性方程组同解的充分必要条件是 B = C。

简化阶梯形的唯一性

引理 3.1

设 B 和 C 都是 $m \times n$ 阶的简化阶梯形矩阵。则 BX = 0 与 CX = 0 这两个线性方程组同解的充分必要条件是 B = C。

• 称右端项为 0 的线性方程组,即形如 AX = 0 的线性方程组,为<mark>齐</mark>次线性方程组。

简化阶梯形的唯一性

引理 3.1

设 B 和 C 都是 $m \times n$ 阶的简化阶梯形矩阵。则 BX = 0 与 CX = 0 这两个线性方程组同解的充分必要条件是 B = C。

• 称右端项为 0 的线性方程组,即形如 AX = 0 的线性方程组,为<mark>齐</mark> 次线性方程组。

定理 3.1

任意矩阵 $A \in \mathbb{F}^{m \times n}$ 都存在唯一的一个简化阶梯形矩阵,记做 $\operatorname{rref}(A)$,使得 A 与 $\operatorname{rref}(A)$ 行等价。

Outline

- 1 简化阶梯形矩阵
- ② 利用简化阶梯形求解线性方程组
- ③ 简化阶梯形的唯一性
- ₫ 矩阵的秩
- 5 再议可逆矩阵

秩的定义:有效方程个数

定义 4.1

定理 4.1

设 $A_{m \times n} X = \beta$ 是一个一般的线性方程组, $\tilde{A} = (A, \beta)$ 是其增广矩阵, 则

定理 4.1

设 $A_{m \times n} X = \beta$ 是一个一般的线性方程组, $\tilde{A} = (A, \beta)$ 是其增广矩阵, 则

● 线性方程组有解的充分必要条件是系数矩阵的秩与增广矩阵的秩相 同、即

$$r(A) = r(\tilde{A}) = r(A, \beta);$$

定理 4.1

设 $A_{m \times n} X = \beta$ 是一个一般的线性方程组, $\tilde{A} = (A, \beta)$ 是其增广矩阵, 则

● 线性方程组有解的充分必要条件是系数矩阵的秩与增广矩阵的秩相 同,即

$$r(A) = r(\tilde{A}) = r(A, \beta);$$

② 线性方程组有唯一解的一个充分必要条件是:

$$r(A) = r(\tilde{A}) = n,$$

其中n是未知量的个数;

定理 4.1

设 $A_{m \times n} X = \beta$ 是一个一般的线性方程组, $\tilde{A} = (A, \beta)$ 是其增广矩阵, 则

● 线性方程组有解的充分必要条件是系数矩阵的秩与增广矩阵的秩相 同,即

$$r(A) = r(\tilde{A}) = r(A, \beta);$$

② 线性方程组有唯一解的一个充分必要条件是:

$$r(A) = r(\tilde{A}) = n,$$

其中n是未知量的个数;

❸ 线性方程组有无穷多解的一个充分必要条件是:

$$r(A) = r(\tilde{A}) < n.$$

定理 4.2

设线性方程组 $A_{m\times n}X = \beta$ 有无穷多解,则其一般解中自由变量的个数 为 n-r(A), 主变量的个数为 r(A)。

定理 4.2

设线性方程组 $A_{m \times n} X = \beta$ 有无穷多解,则其一般解中自由变量的个数 为 n-r(A),主变量的个数为 r(A)。

推论 4.1

齐次线性方程组 $A_{m \times n} X = 0$ 有唯一解的充要条件是 r(A) = n。

定理 4.2

设线性方程组 $A_{m\times n}X=\beta$ 有无穷多解,则其一般解中自由变量的个数 为 n-r(A),主变量的个数为 r(A)。

推论 4.1

齐次线性方程组 $A_{m \times n} X = 0$ 有唯一解的充要条件是 r(A) = n。

定理 4.3

设 A 是一个一般的 $m \times n$ 阶矩阵,P 是一个 m 阶可逆方阵,则

$$r(A) = r(PA).$$

Outline

- 1 简化阶梯形矩阵
- ② 利用简化阶梯形求解线性方程组
- ③ 简化阶梯形的唯一性
- 4 矩阵的秩
- 5 再议可逆矩阵

定理 5.1

定理 5.1

设 A 是一个 n 阶方阵,则下列命题等价:

Ⅰ A 可逆;

定理 5.1

- A 可逆;
- ② 与 A 行等价的阶梯形矩阵没有全 0 行;

定理 5.1

- A 可逆;
- ② 与 A 行等价的阶梯形矩阵没有全 0 行;
- \bullet 与 A 行等价的简化阶梯形矩阵是单位矩阵 E_n ;

定理 5.1

- A 可逆;
- ② 与 A 行等价的阶梯形矩阵没有全 0 行;
- \bullet 与 A 行等价的简化阶梯形矩阵是单位矩阵 E_n ;
- ① 存在初等矩阵 P_1, \ldots, P_k , 使得 $A = P_1 \cdots P_k$;

定理 5.1

- A 可逆;
- ② 与 A 行等价的阶梯形矩阵没有全 0 行;
- \bullet 与 A 行等价的简化阶梯形矩阵是单位矩阵 E_n ;
- ① 存在初等矩阵 P_1, \ldots, P_k ,使得 $A = P_1 \cdots P_k$;
- **6** r(A) = n;

定理 5.1

- A 可逆;
- ② 与 A 行等价的阶梯形矩阵没有全 0 行;
- \bullet 与 A 行等价的简化阶梯形矩阵是单位矩阵 E_n ;
- ① 存在初等矩阵 P_1, \ldots, P_k , 使得 $A = P_1 \cdots P_k$;
- **1** r(A) = n;
- **6** AX = 0 只有 0 解;

定理 5.1

- A 可逆;
- ② 与 A 行等价的阶梯形矩阵没有全 0 行;
- \bullet 与 A 行等价的简化阶梯形矩阵是单位矩阵 E_n ;
- ① 存在初等矩阵 P_1, \ldots, P_k , 使得 $A = P_1 \cdots P_k$;
- **6** r(A) = n;
- **6** AX = 0 只有 0 解;
- \bullet 对任意的 $\beta \in \mathbb{F}^n$, $AX = \beta$ 都有解;

定理 5.1

- A 可逆;
- ② 与 A 行等价的阶梯形矩阵没有全 0 行;
- \bullet 与 A 行等价的简化阶梯形矩阵是单位矩阵 E_n ;
- ① 存在初等矩阵 P_1, \ldots, P_k , 使得 $A = P_1 \cdots P_k$;
- **6** r(A) = n;
- **6** AX = 0 只有 0 解;
- **②** 对任意的 β ∈ \mathbb{F}^n , $AX = \beta$ 都有解;
- § 存在 $B \in \mathbb{F}^{n \times n}$ 使得 $AB = E_n$;

定理 5.1

- A 可逆;
- ② 与 A 行等价的阶梯形矩阵没有全 0 行;
- \bullet 与 A 行等价的简化阶梯形矩阵是单位矩阵 E_n ;
- ① 存在初等矩阵 P_1, \ldots, P_k , 使得 $A = P_1 \cdots P_k$;
- **6** r(A) = n;
- **6** AX = 0 只有 0 解;
- **②** 对任意的 β ∈ \mathbb{F}^n , $AX = \beta$ 都有解;
- **③** 存在 $B ∈ \mathbb{F}^{n \times n}$ 使得 $AB = E_n$;
- **9** 存在 $C \in \mathbb{F}^{n \times n}$ 使得 $CA = E_n$ 。

例 3

设 A, B 是 n 阶方阵,满足 AB = A + B,证明: AB = BA。