\$ 2.5 可逆矩阵

高等代数 https://gdfzu.club

Outline

- 1 初等行变换与可逆
- ② 可逆矩阵的基本性质
- ③ 可逆矩阵与初等矩阵
- 4 可逆与行等价

初等变换的"可逆"性

• 初等行变换是一个"可逆"的变换

初等变换的"可逆"性

• 初等行变换是一个"可逆"的变换

命题 1.1

若矩阵 A 经过初等行变换可以变成矩阵 B,则矩阵 B 也可以经过初等行变换变成矩阵 A。

可逆矩阵的定义

定义 1.1

设 $A \in n$ 阶方阵, 若存在矩阵 B, 使得

$$AB = BA = E_n$$

则称 A可逆 (或非奇异、非异), B 称为 A 的逆矩阵。若 B 不存在, 则 称 A不可逆。

可逆矩阵的定义

定义 1.1

设 $A \in \mathbb{R}$ 阶方阵, 若存在矩阵 B, 使得

$$AB = BA = E_n$$

则称 A可逆 (或非奇异、非异), B 称为 A 的逆矩阵。若 B 不存在, 则 称 A不可逆。

例 1

$$A = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}, \ B = \begin{pmatrix} -1 & 2 \\ -2 & 3 \end{pmatrix}.$$

• 只有方阵才可能可逆。

• 只有方阵才可能可逆。

• 非零矩阵未必可逆; 如 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 不可逆。

- 只有方阵才可能可逆。
- 非零矩阵未必可逆; 如 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 不可逆。
- 若 A 可逆,则其逆阵<mark>唯一</mark>,记做 A^{-1} 。

- 只有方阵才可能可逆。
- 非零矩阵未必可逆; 如 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 不可逆。
- 若 A 可逆,则其逆阵<mark>唯一</mark>,记做 A^{-1} 。
- 若 AB = AC,且A 可逆,则 B = C。

- 只有方阵才可能可逆。
- 非零矩阵未必可逆; 如 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 不可逆。
- 若 A 可逆,则其逆阵<mark>唯一</mark>,记做 A^{-1} 。
- 若 AB = AC,且A 可逆,则 B = C。
- 一般的 $A^{-1}BA \neq B$,不可记 A^{-1} 为 $\frac{1}{A}$ 或 $\frac{E}{A}$ 。

- 只有方阵才可能可逆。
- 非零矩阵未必可逆; 如 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 不可逆。
- 若 A 可逆、则其逆阵唯一、记做A⁻¹。
- 若 AB = AC,且A 可逆,则 B = C。
- 一般的 $A^{-1}BA \neq B$,不可记 A^{-1} 为 $\frac{1}{A}$ 或 $\frac{E}{A}$ 。
- A 与 A⁻¹ 乘积可交换。

二阶矩阵的逆

命题 1.2

设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
。若 $ac - bd \neq 0$,则 A 可逆,且

$$A^{-1} = \frac{1}{ac - bd} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

举例

例 2

设
$$A = \begin{pmatrix} d_1 & & \\ & \ddots & \\ & & d_n \end{pmatrix}$$
,其中 $d_1 \cdots d_n \neq 0$,求 A^{-1} 。

举例

例 2

设
$$A = \begin{pmatrix} d_1 \\ \ddots \\ d_n \end{pmatrix}$$
,其中 $d_1 \cdots d_n \neq 0$,求 A^{-1} 。

例 3

设 $A \in \mathbb{R}$ 阶方阵, 且 $A^3 + A^2 + A + E_n = 0$, 证明 $A - E_n$ 可逆。

初等矩阵的逆

命题 1.3

每一个初等矩阵都是可逆矩阵, 且其逆矩阵是相同类型的初等矩阵, 即

$$E(i,j)^{-1} = E(i,j),$$

$$E(i(c))^{-1} = E(i(c^{-1})),$$

$$E(i,j(c))^{-1} = E(i,j(-c)).$$

可逆矩阵为系数的线性方程组

定理 1.1

若 A 是一个可逆矩阵,则以 A 为系数矩阵的线性方程组 $Ax = \beta$ 有唯 一解 $x = A^{-1}\beta$ 。特别地, Ax = 0 只有 0 解。

Outline

- 1 初等行变换与可逆
- ② 可逆矩阵的基本性质
- ③ 可逆矩阵与初等矩阵
- 4 可逆与行等价

• 若 A 可逆,则 $(A^{-1})^{-1} = A$;

- 若 A 可逆,则 $(A^{-1})^{-1} = A$;
- 若 A 可逆,且c 非零,则 cA 可逆,且 $(cA)^{-1} = c^{-1}A^{-1}$;

- 若 A 可逆,则 $(A^{-1})^{-1} = A$;
- 若 A 可逆,且c 非零,则 cA 可逆,且 $(cA)^{-1} = c^{-1}A^{-1}$;
- 若 $A \times B$ 均可逆,则 AB 也可逆,且 $(AB)^{-1} = B^{-1}A^{-1}$;

- 若 A 可逆,则 $(A^{-1})^{-1} = A$;
- 若 A 可逆,且c 非零,则 cA 可逆,且 $(cA)^{-1} = c^{-1}A^{-1}$;
- 若 $A \times B$ 均可逆,则 AB 也可逆,且 $(AB)^{-1} = B^{-1}A^{-1}$;
- $(A_1 \cdots A_k)^{-1} = A_k^{-1} \cdots A_1^{-1}$;

- 若 A 可逆,则 $(A^{-1})^{-1} = A$;
- 若 A 可逆,且c 非零,则 cA 可逆,且 $(cA)^{-1} = c^{-1}A^{-1}$;
- 若 $A \times B$ 均可逆,则 AB 也可逆,且 $(AB)^{-1} = B^{-1}A^{-1}$;
- $(A_1 \cdots A_k)^{-1} = A_k^{-1} \cdots A_1^{-1}$;
- 若 A 可逆,则 A^T 可逆,且 $(A^T)^{-1} = (A^{-1})^T$ 。

定义 2.1

设 A 是一个可逆方阵, $k \in \mathbb{Z}^+$ 是一个正整数, 则 A^{-k} 定义为:

$$A^{-k} = (A^k)^{-1} = (A^{-1})^k$$
.

定义 2.1

设 A 是一个可逆方阵, $k \in \mathbb{Z}^+$ 是一个正整数, 则 A^{-k} 定义为:

$$A^{-k} = (A^k)^{-1} = (A^{-1})^k$$
.

 \bullet $A^rA^s = A^{r+s}$;

定义 2.1

设 A 是一个可逆方阵, $k \in \mathbb{Z}^+$ 是一个正整数, 则 A^{-k} 定义为:

$$A^{-k} = (A^k)^{-1} = (A^{-1})^k$$
.

- $\bullet \ A^r A^s = A^{r+s};$
- $(A^r)^s = A^{rs}$;

定义 2.1

设 A 是一个可逆方阵, $k \in \mathbb{Z}^+$ 是一个正整数, 则 A^{-k} 定义为:

$$A^{-k} = (A^k)^{-1} = (A^{-1})^k$$
.

- \bullet $A^rA^s = A^{r+s}$;
- $(A^r)^s = A^{rs}$;
- $A^0 = E_0$

Outline

- 1 初等行变换与可逆
- ② 可逆矩阵的基本性质
- ③ 可逆矩阵与初等矩阵
- 4 可逆与行等价

可逆矩阵的化简

引理 3.1

设 A、B 是同阶方阵, 且 A 可逆。则 B 可逆当且仅当 AB 可逆。

可逆矩阵的化简

引理 3.1

设 $A \times B$ 是同阶方阵, 且 A 可逆。则 B 可逆当且仅当 AB 可逆。

引理 3.2

设 A 是一个方阵。若 A 有一行全为 O, 则 A 必定奇异 (不可逆)。

可逆矩阵的化简

引理 3.1

设 A、B 是同阶方阵, 且 A 可逆。则 B 可逆当且仅当 AB 可逆。

引理 3.2

设 A 是一个方阵。若 A 有一行全为 O, 则 A 必定奇异 (不可逆)。

引理 3.3

设 B 是一个阶数为 n 的阶梯形方阵。若 B 没有全 0 行,则 B 可经过 初等行变换变成单位矩阵 E_n 。

定理 3.1

设 A 是一个 n 阶方阵。则下述命题等价:

定理 3.1

设 A 是一个 n 阶方阵。则下述命题等价:

A 可逆,

定理 3.1

设A是一个n阶方阵。则下述命题等价:

- A 可逆,
- ② A 可以经过初等行变换变成单位矩阵,

定理 3.1

设A是一个n阶方阵。则下述命题等价:

- A 可逆,
- ② A 可以经过初等行变换变成单位矩阵,
- ❸ A 可以表示为初等矩阵的乘积。

Gauss-Jordan 消去法求逆矩阵

例 4

设
$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$
,求 A^{-1} 。

Outline

- 1 初等行变换与可逆
- ② 可逆矩阵的基本性质
- ③ 可逆矩阵与初等矩阵
- 🐠 可逆与行等价

行等价

定义 4.1

对于两个同阶矩阵 A 与 B (不一定是方阵), 若从 A 经过 (多次) 初等 行变换可以变成矩阵 B, 则称 A 与 B 是行等价的。

行等价

定义 4.1

对于两个同阶矩阵 A 与 B (不一定是方阵), 若从 A 经过 (多次) 初等 行变换可以变成矩阵 B, 则称 A 与 B 是行等价的。

● 任意给定的矩阵 A 都行等价于某一个阶梯形矩阵。

行等价

定义 4.1

对于两个同阶矩阵 A 与 B (不一定是方阵), 若从 A 经过 (多次) 初等 行变换可以变成矩阵 B, 则称 A 与 B 是行等价的。

任意给定的矩阵 A 都行等价于某一个阶梯形矩阵。

命题 4.1

矩阵 A 与 B 行等价的充分必要条件是存在可逆矩阵 P,使得 PA = B。

定理 4.1

行等价关系是一种等价关系,即:

定理 4.1

行等价关系是一种等价关系,即:

● 自反性:对任意矩阵 A, A 与 A 行等价;

定理 4.1

行等价关系是一种等价关系,即:

- 自反性:对任意矩阵 A, A 与 A 行等价;
- ② 对称性: 若矩阵 A 与 B 行等价,则矩阵 B 与 A 也是行等价的;

定理 4.1

行等价关系是一种等价关系,即:

- 自反性:对任意矩阵 A, A 与 A 行等价;
- ② 对称性: 若矩阵 A 与 B 行等价,则矩阵 B 与 A 也是行等价的;
- ◎ 传递性: 若矩阵 A 与 B 行等价, 且 B 与 C 行等价, 则 A 与 C 行等价。